

BrightIntegrator™
User’s Manual

Version 4.0.0
March 2010

Copyright © 2002-2010 Bright Software Pty. Ltd.

All rights reserved

Due to continued product development this information may change without notice. The information

and intellectual property contained herein remains the exclusive property of Bright Software Pty. Ltd.

If you find any problems in the documentation, please report them to us in writing. Bright Software

Pty. Ltd. does not warrant that this document is error-free.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form

or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior

written permission of Bright Software Pty. Ltd.

BrightIntegrator User‟s Manual Page 2 of 110

www.brightsoft.com.au Version 4.0.0

Tables of Contents

BrightIntegrator™ .. 1
1.0 Terms and Abbreviations ... 4
1.0 Introduction .. 5

1.1 The Job Processor .. 5
1.2 Push Module .. 6

2.0 Jobs and Tasks ... 7
2.1 Transaction Support ... 8

2.1.1 Auto-Commit .. 9

2.1.2 Auto-Commit and BrightServer™ .. 9
2.2 Calculating the Difference ... 9

2.3 Grouping Data .. 10
2.3.1 Group Definition ... 10
2.4 Transforming Data ... 12

3.0 Data Sets .. 13
3.1 Data Iteration and Chunking .. 13

3.1.1 Data Iteration and BrightServer™ .. 13
4.0 Data Mapping... 15

4.1 Data Mapping and BrightServer .. 15
5.0 Push Module .. 16

5.1 Architecture.. 16
5.2 Push Module XML Configuration File .. 17
5.3 Message States And Retries ... 19

5.4 Message Escalation .. 21

5.5 Push Module Accessors ... 21
5.6 Publications and Subscriptions .. 21
5.7 The Synchronisation Engine and the Push Module ... 22

6.0 How to Install and Run BrightIntegrator™ ... 23
7.0 A Brief Introduction to XML ... 24

8.0 How to Configure BrightIntegrator™ ... 25
8.1 Jobs Configuration ... 26
8.2 Tasks Configuration ... 27

8.2.1 Grouping ... 28
8.2.2 Transformations .. 29

8.3 Data Sets Configuration ... 31

8.3.1 File .. 33

8.3.2 BrightServer™ .. 35
8.3.3 JDBC ... 37
8.3.4 Pronto .. 40
8.3.5 Web Services .. 42
8.3.6 Email ... 44

8.3.7 Push ... 49
8.3.8 BrightForms .. 50
8.3.9 Script ... 53

8.4 Mappings Configuration .. 54
8.4.1 CSV (Character Separated Value) File Mapping.. 54

8.4.2 Fixed-field-length File Mapping ... 58

8.4.3 XML File Mapping ... 61
8.4.4 Query Mapping ... 62

BrightIntegrator User‟s Manual Page 3 of 110

www.brightsoft.com.au Version 4.0.0

8.4.5 API Mapping ... 64
8.4.6 Email Mapping.. 65
8.4.7 Text File Mapping... 67
8.4.8 Transformation Mapping .. 67

8.5 Queries ... 71

8.5.1 User Defined Queries .. 74
8.6 Admin Element .. 76
8.7 Push Module .. 77
8.8 Scheduler Component .. 83
8.9 Data Value Formatting ... 84

8.9.1 Number Formatting ... 84
8.9.2 Date Formatting .. 85

8.10 Logging Configuration... 86
8.11 Scripts .. 87

9.0 Last Run file ... 88
10.0 How Do I ? ... 89

10.1 JDBC and BrightServer import difference task ... 89

10.2 Exporting joined tables .. 89
Appendix A – API (Pronto, Web Service) Configuration File .. 91

A1.0 Introduction ... 91
A1.1 “pre-task” element... 92

A1.2 “group” element .. 92
A1.3 “post-task” element ... 94
A1.4 “apis” element ... 94

Appendix B – Cron Expressions .. 100

B1.0 Cron Definition ... 100
B1.1 Cron Expressions... 100

Appendix C – Running BrightIntegrator as a Windows Service ... 103

Appendix D – How to connect BrightServer via a secure connection using “truststore” 105
Appendix E – Formatting Objects ... 106

Appendix F – TaskData XML Object .. 107
Appendix G – Transformation Field Functions ... 108

BrightIntegrator User‟s Manual Page 4 of 110

www.brightsoft.com.au Version 4.0.0

1.0 Terms and Abbreviations

BrightBuilder : Bright Software‟s mobile application designer.

BrightForms : Bright Software‟s form executing engine.

BrightIntegrator : Bright Software‟s integration engine that allows data exchange

mechanisms to and from various data sources.

BrightServer : Bright Software‟s mobile application server running on a J2EE compliant

application server.

Field User : An employee who works outside of the employer business premises most of his

or her time. S/he communicates with the company‟s computer system remotely over either a

mobile network (GSM, GPRS, 3G) or a fixed landline. It is sometimes referred as “mobile

worker”.

JDBC (Java Database Connectivity) : A Java API that enables Java programs to execute SQL

statements. It allows Java programs to interact with any SQL-compliant database.

MOM : Message Oriented Middleware

Mobile Solution : A set of computer software and hardware that are used to automate data

exchange process for the mobile field users in industries such as service, sales etc. The

mobile solutions are designed and commissioned by the systems integrators.

ODBC (Open Database Connectivity) : A standard database access method.

PAS : Publish And Subscribe

P&S : Publish & Subscribe

Push : Refers to the data exchange that is initiated and controlled by the server.

Synchronisation : Refers to the data exchange that is initiated and controlled by the client

side.

BrightIntegrator User‟s Manual Page 5 of 110

www.brightsoft.com.au Version 4.0.0

1.0 Introduction

BrightIntegrator™ is Bright Software‟s integration engine that allows data exchange

mechanisms to and from various data sources. These data sources include simple flat ASCII

text files (fixed and comma separated values), JDBC (including ODBC via JDBC-ODBC

bridge), Pronto via PIE interface, BrightServer™, BrightForms™ field clients (only as a

destination), email servers (currently only as a destination), web services etc.

The user can configure BrightIntegrator™ to exchange data in either direction between the

data sources; and can also be used to push data to the remote field users using

BrightForms™.

The data exchange is defined with an XML configuration file. The user configures a set of

jobs consisted of one or more tasks to be executed by the BrightIntegrator™ engine .

1.1 The Job Processor

The central component of the BrightIntegrator™ engine is the Job Processor (JP). JP is

mainly responsible for managing the data flow from a source to a destination. The Job

Processor can also handle the optional calculation of the difference between source and

destination data (sometimes referred as task data throughout this document), as well as the

optional grouping of the source data. JP manages the data transactions across the whole job.

It drives the data accessors to co-ordinate the data read and write. The following image shows

the simple BrightIntegrator architecture with the Job

Accessor

(Writer)

Accessor

(Reader)

data

Job

Processor

usesuses

BrightIntegrator Architecture

A data accessor is a component that knows how to read from and write to a particular data

source (BrightServer™, JDBC data source, file etc.). Accessors are configured in a task to

operate in read or write mode. A series of configured tasks defines a job. In simple terms, for

configured tasks in a job, the JP reads data from a source data set using an accessor operating

in reader mode, and writes the data read to a destination data set using an accessor operating

in writer mode.

BrightIntegrator User‟s Manual Page 6 of 110

www.brightsoft.com.au Version 4.0.0

1.2 Push Module

Sending (pushing) a dataset to a destination as it becomes available is one of the important

requirements of any backend integration. Especially this may become critically important, for

instance, for organisations who need to push a job or service requests to the remote field

users as they receive them from their customers.

To address this requirement a special writer accessor is used : Push Accessor. The push writer

accessor incorporates the Notification module that allows BrightIntegrator to send data to the

field users using the Publish and Subscribe modules. The Publish and Subscribe modules is a

rules based system that knows what data to send and where to send. This is basically a push

module that allows the server to dispatch data automatically to the field users. The following

image shows the Push module architecture:

BrightIntegrator Push Module Architecture

P&S Accessor

(Writer)

Notification

Module

XML

Configuration
usesBI Accessor

(Reader)

user, data

c1 cnc2

BI

Writer

BI

Writer

BI

Writer

Queue

Thread 1 Thread 2 Thread n

persists

RDBMS

or

Files

data

msgId, content

Dispatchers

(Worker

Threads)

Job

Processor

scheduler

usesuses

This functionality will be discussed in more detail in Section 5 - Push Module.

BrightIntegrator User‟s Manual Page 7 of 110

www.brightsoft.com.au Version 4.0.0

2.0 Jobs and Tasks

BrightIntegrator™ executes a job or a series of jobs defined in the XML configuration file.

The name of the configuration file can be passed to BrightIntegrator™ as one of the

command line arguments.

A job then consists of tasks. A task is basically a read action from a data source in order to

obtain data, and then a write action to write that data to the destination. The Job Processor

creates and maintains the lifetimes of each task configured in a job. The following diagram

depicts a job.

Task 1 Task 2 Task n

Job 1

The Job Processor will create the necessary accessors to complete the read from the source

and subsequent write to the destination. The source accessor is used in the reader mode, and

the destination accessor is operated in the writer mode.

The accessor configured as the source (i.e. the data reader), reads the data and passes the data

as a set to the Job Processor. The Job Processor then writes the set received from the reader to

the writer.

A data reader (source accessor) may be able to read the data in chunks, rather then in a single

big read. The Job Processor can query the reader accessor and, if the chunking is configured

for the data set and the reader accessor supports data chunking, then the data is read from the

source in iterations and written to the destination in blocks of the specified size. The size of

the block is configurable for each data set defined (See section 3.1 Data Iteration and

Chunking for further details).

BrightServer

Accessor

(In reader mode)

SOURCE

File Accessor

(In writer mode)

DESTINATION

Set

Task 1: Read from BrightServer and Write to File

The data read from the source is converted into a set. A set is a very important logical entity

within BrightIntegrator™. It represents the basic processing unit within BrightIntegrator™.

Data arrives from the source, typically as records from the same table, or lines from the same

file. The incoming data will be formatted and arranged according to the convention of the

data source, and will need to be parsed and converted to Bright Software data types. So

finally the set will be vendor neutral and decoupled from the data source, and ready to be

BrightIntegrator User‟s Manual Page 8 of 110

www.brightsoft.com.au Version 4.0.0

processed, and then written to the destination. See section 4.0 Data Mapping for further

details about how the data mapping takes place.

When it comes to writing the data to the destination, each set is matched by name from its

source to its destination. Each set contains a mapping that provides a name for each field.

Each field is also matched by name from within its source set to its destination set. In this

way, when transferring data, the set names, and the names of each field within the sets must

correspond between source and destination.

If the push accessor is used in a task as writer (destination) accessor, then the task via the

push module being used can process the incoming data and deposit the messages to the

Notification Module. Please note that the push accessor has its own configuration file that

contains the necessary configuration aspects of the push module. See Section 5.0 Push

Module for further details about the accessor writer.

2.1 Transaction Support

A task may be executed in the context of a transaction. JP manages transactions by tightly

controlling the data writer for each task. Recall that the data writer is the accessor operating

in writer mode for that task.

JP indicates the start of a transaction to the data writer, then the actual task is carried out, and

finally, if successful, JP causes the data writer to actually commit the data. In the event of a

failure, JP asks the writer to roll back the transaction data, to the same state as before the start

of the transaction.

For configuration purposes, each task entry in the job definition can specify the start and/or

end point of a transaction. These flags are as follows.

Flag Description

bt Begin Transaction

et End Transaction

The Job Processor starts a transaction if the bt flag is set to “1”, and completes the transaction

if the et flag is set to “1”.

In this way, a group of tasks can be defined to be in a transaction together. For instance, to

have three tasks A, B and C performed as a transaction. The flags would be

A bt=1 et=0

B bt=0 et=0

C bt=0 et =1

If a task fails in transacted group of tasks, then all the tasks in the transacted group are

deemed to have failed. In this case, all data from all of the tasks will be rolled back to the

same state as before the first task commenced.

BrightIntegrator User‟s Manual Page 9 of 110

www.brightsoft.com.au Version 4.0.0

2.1.1 Auto-Commit

If both the transaction flags are turned off (i.e. bt=”0” and et=”0”), and the task is outside of

any transaction group, then the task is said to be in “auto-commit” mode.

This means that data will be actually written, or committed, as soon as it is received by the

data writer.

2.1.2 Auto-Commit and BrightServer™

It is recommended to use auto-commit when writing to BrightServer™, whenever possible,

especially when importing large amounts of data. In general, transactions should only be

used when dealing with data integrity across multiple tasks. Since transactions require that

all written data be temporarily stored until the commit occurs, large amounts of memory are

required. In addition, each transaction has a corresponding timeout on the application server,

which will elapse if the amount of data is too great.

2.2 Calculating the Difference

The Job Processor may be configured to calculate the difference between two data sources

being read. This feature can minimise the load and processing on the destination, hence

reducing the overall write time. For instance, if a large inventory file needs to be loaded into

the BrightServer™ database, calculating the difference (i.e. what has changed since the last

data load), and just importing the changed data will reduce the load and the processing time

for the subsequent inventory updates.

File Accessor

(In reader mode)

SOURCE

BrightServer

Accessor

(In reader mode)

OLD SOURCE

Set

Set

Diff. Set

(cahnged data)

File Accessor

(In writer mode)

DESTINATION

Task 1: Difference Task

The task definition has a parameter that the user can use to define the previous old data set. If

the old data source is defined, then the Job Processor will read from both old and new data

sources, then calculate the difference, and finally write the difference data onward to the

destination.

Data that has been read is stored in sets. Sets are used so that data from disparate sources can

be compared. For example, using sets, it is possible to compare data from a file and a server

table. The difference between the old set and the new set is processed by matching sets of the

same name, and comparing the field values of the primary keys. (Primary keys are specified

in the data mapping). If the primary keys match, then the rest of the data in the record are

compared. If some data has changed, then the newer record is appended to the difference

BrightIntegrator User‟s Manual Page 10 of 110

www.brightsoft.com.au Version 4.0.0

data, and a flag is added to the record, signifying that the record has “changed”. If the data is

identical, then nothing is appended to the difference data.

If a new record with the primary key values is not found in the old data set, then the record is

appended to the difference data, and a flag is added, signifying that the records has been

“added”. Vice versa, old records with no matching new record are said to have been

“deleted”.

The result itself is another set, and each record will have a difference status flag, “added”,

“changed”, or “deleted”. The result set is written to the destination, which must be able to

understand the difference status of each record, and act accordingly. Types of data sets that

are able to consume difference data include BrightServer™ and JDBC.

2.3 Grouping Data

The Job Processor may be configured to sort the data that has been read, into logically related

groups of data. The data that has been read will be stored in sets. By grouping the data, these

sets of records will be transformed into groups of data.

2.3.1 Group Definition

A group is a set of records from sets which are associated by grouping relationships. A group

will contain one record from the parent set and all its related records from the child set(s).

The grouping relationship describes how the member records from each set, are related to

each other.

For example let us assume that there are two data sets that have been read. These two sets are

ORDER_HEADER, containing records for new sales orders, and ORDER_ITEM, containing

records for the items that comprise the new sales orders. Now say that this new sales order

data needs to be sent to a destination data writer that only understands orders, rather than sets

or tables. This is a case we would need to transform the two sets into groups. In this case

each group will be an individual sales order. Consider the following data for tables

ORDER_HEADER, and ORDER_ITEM.

ORDER_HEADER

ORDER_ID ORDER_DATE CUST_ID

100 1/1/2004 1234

101 2//1/2004 5678

ORDER_ITEM

ORDER_ID ITEM_NO PRODUCT_ID QTY

100 1 PRD1 10

100 2 PRD2 15

101 1 PRD2 5

101 2 PRD15 10

101 3 PRD2 1

BrightIntegrator User‟s Manual Page 11 of 110

www.brightsoft.com.au Version 4.0.0

From this example data, we would have two groups as follows:

Group 1

ORDER_HEADER

ORDER_ID ORDER_DATE CUST_ID

100 1/1/2004 1234

ORDER_ITEM

ORDER_ID ITEM_NO PRODUCT_ID QTY

100 1 PRD1 10

100 2 PRD2 15

Group 2

ORDER_HEADER

ORDER_ID ORDER_DATE CUST_ID

101 2//1/2004 5678

ORDER_ITEM

ORDER_ID ITEM_NO PRODUCT_ID QTY

101 1 PRD2 5

101 2 PRD15 10

101 3 PRD2 1

The way that the grouping process works, is that it takes the parent set (ORDER_HEADER

in the case above) and creates a group for each record. Thus each group is initially created,

and has its first member record. Next, the process takes each child set, (ORDER_ITEM is

the lone child set in the case above) and with the grouping relationship in mind, places each

child set record into the group that it matches, according to the relationship key field. In the

case above, the ORDER_ID is the key field that relates the ORDER_HEADER set to the

ORDER_ITEM set.

Groups are defined in the Tasks element of the configuration file. See Section 7.2.1 for more

details on groups.

It is also possible for a single set to be “self-grouped”. This one set will have each of its

records placed into a single group by themselves. The result is that there are as many

resulting groups as there were records in the single set. It is like an order header set being

grouped so that each order header record appears in its own group, but then there are zero

order items to be grouped into the order groups.

BrightIntegrator User‟s Manual Page 12 of 110

www.brightsoft.com.au Version 4.0.0

2.4 Transforming Data

Sometimes the data read from a source needs to be slightly manipulated before it is written to

its destination. For instance a new field may be needed in the data to identify its source before

written to its destination. This would require an additional field to be created in the task data.

Using transformations, a task data (the data read from a source) can be modified to have an

extra field in addition to the fields read from the source.

Another example would be the need to merge the fields from various records in different sets

into a single record. For example, an order items may need to be combined with the fields

from their order header data.

The JP (Job Processor) can be configured to transform a task data (grouped or not) defined as

per the transformation elements in a task definition. The JP simply will process each

transformation defined for each set and transform those sets in the task data as per the

mapping and other configuration options specified in the transformation definition.

Transformations are executed by the JP after finding a difference (if an old source is

configured in the task definition) and grouping the data (if the grouping options are

specified).

The transformations are defined for each set. Each set transformation can be configured to

transform the set itself, or transform the set into another set by specifying the optional output

set name. The transformed task data will then contain the new sets and the existing sets prior

to the transformations.

Mapping
Task

Data

Task

Data

Transformation

Data

BrightIntegrator User‟s Manual Page 13 of 110

www.brightsoft.com.au Version 4.0.0

3.0 Data Sets

Each task basically reads from a source and writes to a destination. A task is configured to

do so by naming data sets to act as the source and destination. Data sets define the locations

where the actual data resides.

Data sets come in a variety of types. These include ASCII files, BrightServer™ tables, JDBC

data sources, and more.

See section 7.3 Data Sets Configuration for the available data sets and for details on how to

configure them.

3.1 Data Iteration and Chunking

The simplest way to think of a task being performed is that all the data is read from the

source, and then that data is written to the destination. However, in the case of a large

amount of data to be transferred, this simple approach will cause problems, in the form of

unresponsiveness and timeouts.

A better way to deal with large data transfers is to use the data iteration feature of

BrightIntegrator™. Data iteration will read a “chunk” of data from the source, and then write

the chunk to the destination, and this is repeated until all of the data has been processed. In

this way, there are write operation interlaced within the read operations.

A task will be performed using data iteration if the source has a data-set limit defined. The

size of the each chunk for the iterations will be up to the defined limit. There are two

exceptions to this however. If a difference is to be processed, or if grouping has been

configured for the task, then no data iteration is possible. This is due to the fact that in both

cases, all of the data must be read and processed, before any data can be written.

REMEMBER: You cannot use data iteration and chunking when processing differences and

grouped data.

You will know that BrightIntegrator is iterating and chunking the records when it displays

“INFO Iterating data from BrightServerBudgetTable to BudgetFile” on the output screen.

3.1.1 Data Iteration and BrightServer™

When using data iteration to write to BrightServer™, data chunks of multiple records will

arrive at the BrightServer™ to be processed. Consider the case where one of those records

contained some invalid data, such as a string that was too long for its field, and as such,

would not be able to be processed. The result would be that the entire chunk will fail to be

processed.

Given this scenario, if the task is in auto-commit mode, then BrightIntegrator™ will retry to

submit each record in the failed chunk, one at a time. In this way, the good data before the

bad record will still get through, and the bad record will be isolated. This then allows a

detailed error regarding the bad record to be returned to the user. This useful feature is only

BrightIntegrator User‟s Manual Page 14 of 110

www.brightsoft.com.au Version 4.0.0

possible if auto-commit is enabled for the task. This is another reason why using auto-

commit is strongly recommended when writing to BrightServer™.

IMPORTANT : Use auto-commit especially when writing large amount of data to

BrightServer.

BrightIntegrator User‟s Manual Page 15 of 110

www.brightsoft.com.au Version 4.0.0

4.0 Data Mapping

Since the BrightIntegrator™ allows us to read data from various disparate data sets, a need

arises for mapping between data types. The problem is that the data types on the source data

set might not be understood by the destination data set. The solution is to map all external

data types to common internal data types. In this way, all data that is read is interpreted by

the data reader and given to JP as internal types. Then any optional difference or grouping is

carried out. Finally, the data writer receives its data as internal types, which it translates to

the external types for writing.

In this way, each data set uses its own mapping to translate data to and from the internal data

types. The mapping is also used to specify the primary keys, which are used in the

processing of groups, as well as calculating differences between records.

Each data set type has its own way of representing data mappings.

4.1 Data Mapping and BrightServer

IMPORTANT NOTE: The data mapping for the BrightServer data set MUST follow the

column order of the registered table in BrightServer. It must include all table columns.

The BrightServer reader accessor populates the data set according to the column order

defined by the table configuration stored in BrightServer. If the data mapping for the writer

data set is ordered the same as the BrightServer data set, the data mappings will be easier to

determine by JP. Otherwise, JP will try to map each field at a time.

Since the query returns all the fields from the server in the column order of the table defined,

the Query <outputfields/> element does not need to be specified in the configuration file.

BrightIntegrator User‟s Manual Page 16 of 110

www.brightsoft.com.au Version 4.0.0

5.0 Push Module

By definition, the data push means sending data automatically to a subscriber based on a set

time or a certain criteria of circumstances defined in a schedule. In mobile solutions, this

service allows supervisors to send data to their field users, it is more effective in terms of the

time sensitivity nature of the data that needs to be dispatched to the field as soon as it can be

and more efficient in terms of the data transfer optimisation and network usage.

The Push Module in BrightIntegrator has two modules, the Push Accessor and the Push

Notification Module. Publish Module is the rule based system that knows what to send and

where to send, while it is the responsibility of the Push Notification Module to find the

destination of the data and send it.

5.1 Architecture

BrightIntegrator Push Mechanism Architecture

Push Accessor

(Writer)

Notification

Module

XML

Configuration
usesBI Accessor

(Reader)

user, data

c1 cnc2

BI

Writer

BI

Writer

BI

Writer

Queue

Thread 1 Thread 2 Thread n

persists

Memory

or

Database

data

msgId, content

Dispatchers

(Worker

Threads)

Job

Processor

scheduler

usesuses

The Push Module is implemented as a BrightIntegrator accessor and will pass the user and

message details to the Notification Module. The Notification Module is hosted within the Job

Processor as a sperate component. It is instantiated via the first invocation of the Push

Accessor. From then onwards, the push accessor writer object processes the incoming task

data and deposits the messages to the Notification Module.

BrightIntegrator User‟s Manual Page 17 of 110

www.brightsoft.com.au Version 4.0.0

The Notification Module then handles the data distribution using the Dispatcher objects. The

messages are persisted in a queue for disaster recovery and resumption of message delivery

purposes. The default message store type is memory. That means that the message queue is

not saved between restarts of BrightIntegrator.

The dispatcher objects use native BrightIntegrator accessors to send data to its destination.

This provides a consistent way of reading data from a source and writing it to a destination.

All the accessors that support the writer functionality can be used in a dispatcher

configuration to push data. For instance, it is possible to read a file content and send it to a

user via an email accessor.

The new push accessor has its own configuration file that contains all the necessary

configuration aspects including subscription and publication rules, the dispatcher

configuration and their delivery attributes.

A scheduler feature has also been implemented on top of the existing Job Processor module.

The scheduler component can trigger the data reads from the source configured based on the

job‟s schedule defined. You can use simple scheduling based on an interval or use a more

complex Cron-trigger based scheduler. Read more about the Cron triggers in Appendix B.

5.2 Push Module XML Configuration File

The following is the layout of the Push Module configuration file:

<push-task version="1.0" def-version="1">

 <publications>

 <publication name="PublishJobs" set="jobs">

 <field>tech_id</field>

 <field>state_code</field>

 <!-- more field's -->

 <!-- ... -->

 </publication>

 <!-- more publication's -->

</publications>

 <subscriptions>

 <!-- A subscription must reference a publication, optional:default-dispatcher-->

 <subscription publication="PublishJobs" default-dispatcher="BFNotify">

 <subscriber type="constant">

 <subscriber-values>

 <!-- for type=constant, the values are the actual data values -->

 <value name="tech_id" type="int">100</value>

 <value name="state_code" type="string">NSW</value>

 <!-- more values, corresponding to the named fields in the referenced

publication-->

 </subscriber-values>

 <dispatcher-values dispatcher="BFNotify">

 <!-- dispatcher-values may use default value from its subscription -->

 <value name="ip" type="string">127.0.0.1</value>

 <!-- more values, corresponding to parameters of the dispatcher being used-->

 </dispatcher-values>

 </subscriber>

BrightIntegrator User‟s Manual Page 18 of 110

www.brightsoft.com.au Version 4.0.0

 <subscriber type="file" file="testData/techmap.csv">

 <subscriber-values>

 <!-- For type=file, the values are indexing the file columns -->

 <value name="tech_id" type="int">1</value>

 <value name="state_code" type="int">2</value>

 <!-- more subscriber-value's -->

 </subscriber-values>

 <dispatcher-values dispatcher="BFNotify">

 <!-- dispatcher-values may use default value from its subscription-->

 <value name="ip" type="int">3</value>

 <!-- more values, corresponding to parameters of the dispatcher being used-->

 </dispatcher-values>

 </subscriber>

 <!-- more subscriber's -->

 </subscription>

 <!-- more subscription's -->

</subscriptions>

 <dispatchers>

 <!--Dispatcher "destination" - name of the dataset to be used to send data-->

 <dispatcher name="BFNotify" destination="BF">

 <attribs>

 <value name="retries" type="int">3</value>

 <!-- more "value"s -->

 </attribs>

 <escalations>

 <!-- executed on-success (0..many) -->

 <escalation execute="on-success">

 <!-- destination writer -->

 <destination>Email</destination>

 <!-- ANDed field values in the header record -->

 <condition/>

 <!-- New field values in the header record. Will replace existing ones -->

 <write-values/>

 </escalation>

 <!-- executed on-failure (0..many) -->

 <escalation execute="on-failure">

 <destination>BSAccessor</destination>

 <condition>

 <value name="STATUS" type="int">0</field>

 </condition>

 <write-values>

 <value name="FAILED_FLAG" type="int">1</field>

 </write-values>

 </escalation>

 <!-- executed always (0..many) -->

 <escalation execute="always">

 <!-- destination writer -->

 <destination>Email</destination>

 <!-- ANDed field values in the header record -->

 <condition/>

 <write-values/>

 </escalation>

 </escalations>

 </dispatcher>

 <!-- more dispatcher's -->

</dispatchers>

 <notifier>

 <attribs>

BrightIntegrator User‟s Manual Page 19 of 110

www.brightsoft.com.au Version 4.0.0

 <value name="max-retries" type="int">3</value>

 <value name="retry-interval" type="int">1800</value>

 <value name="delete-failed-jobs" type="boolean">yes</value>

 </attribs>

 <message-store type="database">

 <value name="url" type="string">127.0.0.1</value>

 <value name="jdbc-driver" type="string">drivername</value>

 <value name="username" type="string">bsuser</value>

 <value name="password" type="string">bspassword</value>

 </message-store>

 </notifier>

</push-task>

5.3 Message States And Retries

Messages to be sent are persisted in a queue called the message store. This will contain

details of the failed message i.e. the data to be sent or where to send it so that it can be resent

to the destination.

There are two types of message stores that can be configured in BrightIntegrator: A memory

based message queue and a relation database based message queue. The memory based

message store is a temporary queue and lost between the restarts of BrightIntegrator.

By default, if there is no message store defined, the memory message store type is used.

When a database message store is used, then BrightIntegrator needs a table with the

following name and structure created.

SQL scripts are distributed in the “resources” directory in BrightIntegrator distribution.

BS__MSG_STORE

Column Name Type Description

MSG_ID Integer Unique message id

DT_ACTION DateTime Date and time of the last action

on the message (created, or

updated)

MSG_STATUS Integer Message state, see table and

diagram below for integer values

and descriptions; and the

corresponding state diagram.

RETRIES Integer No of current retries for the

message.

CONTENT Image/Blob This column is the binary blob

column where the serialised

message object is stored.

BrightIntegrator User‟s Manual Page 20 of 110

www.brightsoft.com.au Version 4.0.0

Message Status and its corresponding descriptions are given in the table below.

Message Status Description

0 Ready

1 Idle

2 Sent

3 Failed

4 Archived

The message status state machine is as follows.

Ready

Archived

Idle

Failed

Sent

created

failed to

send

retry

successfully

sent

s f

idle time

elapses

failed to send

after retries

When a message is created, it will be in the “Ready” state and persisted to the message store.

When the message is sent to its destination successfully, then it will be in the “Sent” state,

and will also be removed from the message store.

If the message could not be sent, then it will be put into the “Failed” state. If the “retries”

option is configured (i.e. > 0), then the Push Module will put the message into the “Idle” state

for the duration of the configured “idle time”.

When the idle time elapses, then the message will again be in the “Ready” state and the Push

Module will try to send it to its destination. If the message could not be sent after the

configured “retries”, then it will be put into “Archived” state in the message store.

“Archived” messages can be configured to be deleted automatically from the message store if

the “delete failed messages” option is configured in the Push Module.

The “retries”, “idle time” and “deleted failed message” are attributes of the Notification

Module and can be configured from the “notifier” section of the Push Module XML

configuration file using the <max-retries>, <retry-interval> and <delete-failed-jobs>

elements. See the Push Module Configuration in Section 8 for further details on the

“notifier” elements.

BrightIntegrator User‟s Manual Page 21 of 110

www.brightsoft.com.au Version 4.0.0

5.4 Message Escalation

The Push Module can also be configured to escalate messages. These escalation actions can

be executed 1) on-failure, 2) on-success or 3) always.

If any escalation is configured, the Push Module will send the failed or successful message to

the configured destination. The Push Module will also be able to escalate message based on

the message content (field values in the task data of the message) to different destinations.

The escalation configuration will also allow the designer to overwrite the existing message

values, which, in turn, can be used to provide a feedback back to the source of the message.

Escalation destination points can be one of the available BrightIntegrator accessors. That will

mean that the message success or failure can be notified back to BrightServer, or a JDBC

accessible database table, or an email to system administrator etc.

5.5 Push Module Accessors

There are a couple of data-sets available for the Push Module, namely:

 BrightForms – defines the configuration for BrightForms client that the message will be

sent to or a sync-rule will be executed upon.

 Push – defines the Push Module configuration file.

 Email – defines the email configuration for the escalation messages.

The usual accessors such as BrightServer, File and JDBC tables can also be used as a

destination data-set for the push module.

Each of these accessors has different attributes that can be overwritten based on the

subscriber details. For example, IP addresses of each BrightForms device for each field users.

These accessors will be discussed in detail in the Data Sets Configuration section.

5.6 Publications and Subscriptions

Publications and subscriptions are always defined within the context of the set data, therefore,

each publication and subscription is associated with a specific set data. Publications are

defined by the query or set data of an accessor. The Push Module can have many publications

and subscriptions.

Before you can send data to a subscriber, you must first create a publication for that data and

also create the subscriptions (who that data is to be sent to). Each publication can contain

many different fields to limit the records to send to each subscribers, this allows you to filter

the task data based from the set data you defined in the Publication element of the Push

configuration file. Each subscription refers to (subscribes to) a specific publication thus

should also contain the same number of fields that the publication refers to.

BrightIntegrator User‟s Manual Page 22 of 110

www.brightsoft.com.au Version 4.0.0

5.7 The Synchronisation Engine and the Push Module

BrightIntegrator works hand in hand with the normal synchronisation engine of

BrightSoftware platform. If using the BrightForms accessor, the BrightBuilder developer

should incorporate the normal synchronisation process in mobile application. If using

background synchronisation, this should also be included in the application program.

BrightIntegrator User‟s Manual Page 23 of 110

www.brightsoft.com.au Version 4.0.0

6.0 How to Install and Run BrightIntegrator™

To install BrightIntegrator, simply uncompress the contents of BrightIntegrator_2_X_X.tgz

to a hard disk directory, i.e. c:\brightintegrator.

Follow the steps below to run BrightIntegrator:

1. Open a command prompt window

2. Change directory to BrightIntegrator installation directory, i.e. c:\brightintegrator

3. Type the command run in the command prompt.

This will execute BrightIntegrator™ using the default config file, which is config.xml in the

conf directory. An alternate config file can be specified on the command line using –c.

For example, run –c D:/MyConfig.xml

The other command line option is –n, which means “no retries”. By default, if

BrightIntegrator™ experiences an error during a job, then the next time it runs that job, it will

retry by starting at the last task in that job that was successful. By specifying the –n

command line option, BrightIntegrator™ will start each job from the first configured task

instead.

The location and name of the last-run file (see Chapter 9) can be set by using [-l|--lastrun

LASTRUN_FILE_NAME] option. The default location of this file is the conf directory.

Important: Ensure that the tables required in the BrightServer data set has been created

and registered in BrightServer through the Management Console.

BrightIntegrator User‟s Manual Page 24 of 110

www.brightsoft.com.au Version 4.0.0

7.0 A Brief Introduction to XML

This section is designed for users that are unfamiliar with XML documents. If you are

familiar with XML basics proceed to next section on configuring BrightIntegrator.

XML stands for Extensible Markup Language. It is a structural and semantic language, not a

formatting language. XML documents form a tree structure, made of elements. Element and

attribute names reflect the kind of the element being described.

<PERSON ID="p1100" GENDER="M">

 <NAME>

 <FORMAT type=”1”></FORMAT>

 <GIVEN>Judson</GIVEN>

 <SURNAME>McDaniel</SURNAME>

 </NAME>

 <BIRTH>Birthday

 <DATE>21 Feb 1834</DATE>

 </BIRTH>

 <DEATH>

 <DATE>9 Dec 1905</DATE>

 </DEATH>

</PERSON>

In this example PERSON is the root element and has several child elements. Every element is

opened and closed with a start tag (<PERSON>) and end tag (</PERSON>). An XML

element is everything from (including) the element's start tag to (including) the element's end

tag.

PERSON is the parent element of NAME, BIRTH and DEATH. NAME, BIRTH and

DEATH are siblings because they have the same parent.

An element can have element content, mixed content, simple content, or empty content. An

element can also have attributes.

In the example above, PERSON has element content, because it contains other elements.

BIRTH has mixed content because it contains both text and other elements. DATE has

simple content (or text content) because it contains only text. FORMAT has empty

content, because it carries no information.

XML elements can have attributes. Attributes offer information about a particular element. In

the example above, PERSON has two attributes ID="p1100" and GENDER="M". The

attribute named ID has the value "p1100". The attribute named GENDER has the value

"M".

BrightIntegrator User‟s Manual Page 25 of 110

www.brightsoft.com.au Version 4.0.0

8.0 How to Configure BrightIntegrator™

Configuration of BrightIntegrator™ is carried out by editing the XML configuration file.

The overall structure of BrightIntegrator xml configuration file is as follows:

<integrator version="2.0">

<jobs version="2.0">

<job name="ExportBarCodesJob">

<task-entry name="ExportBarCodesTask" bt="1" et="1"/>

<!--List more task-entry here... -->

</job>

<!--List more jobs here... -->

</jobs>

<tasks version='2.0'>

<task name="ImportBarCodesTask" >

<!--Task Details... -->

</task>

<!--List more task here... -->

</tasks>

<queries>

<query name="BarcodeQuery">

<!--query details... -->

</query>

<!--List more queries here... -->

</queries>

<data-sets>

<data-set name="BrightServerBarCodeTable" type="BrightServer">

<!--data-set details... -->

</data-set>

<!--List more data-sets here... -->

</data-sets>

<mappings version = "2.0">

<mapping name="BarcodeQuery" type="query">

<!--mapping details... -->

</mapping>

<!--List more mappings here... -->

</mappings>

<schedules>

 <schedule name ="SimpleSchedule" type="simple">

 <value name="interval" type="int">300</value>

 </schedule>

 <schedule name ="CronSchedule" type="cron">

 <value name="cron-expression" type="string">0 0/5 * * * ?</value>

 <!--List more values here... -->

 </schedule>

<!--List more schedules here... -->

</schedules>

</integrator>

BrightIntegrator User‟s Manual Page 26 of 110

www.brightsoft.com.au Version 4.0.0

Elements in “integrator”

Element Name Description Required

jobs Defines the jobs to be executed within BrightIntegrator.

This consists of one or more tasks elements.

Yes

tasks Describes the task details i.e. source and destination data

sets, referred by the jobs elements.

Yes

queries States what data are to be transferred. Used by BrightServer

and JDBC data-sets.

Yes

data-sets Data sets define the locations where the actual data resides. Yes

mappings This element provides a unique, logical name for each data

field in the data set.

Yes

The file must contain the following elements: jobs, tasks, queries, data-sets, and mappings.

The details of each element are provided in the following sub-sections. Also refer to the

default configuration file, config.xml, located in the conf directory of BrightIntegrator

installation directory.

8.1 Jobs Configuration

Each job must have a name, and consists of one or more task-entry‟s that will be executed in

order of appearance. Each task-entry names the task that is to be executed.

<job name=”MyJob”>

<task-entry name="AutoCommitTask" bt="0" et="0"/>

<task-entry name="TransTask1" bt="1" et="0"/>

<task-entry name="TransTask2" bt="0" et="0"/>

<task-entry name="TransTask3" bt="0" et="1"/>

</job>

In the above example, the first task to be executed will be an AutoCommitTask, which is said

to be in “auto-commit” mode. This task will write its data as soon as it is sent to the data

writer. The following three tasks will be executed sequentially, as a transaction.

Attributes of “job”

Attribute Description Required

name The name of the job. Yes

schedule The name of the scheduler component to be

used to trigger the job executions.

No

continue-on-error If specified and set to “yes”, then if a task fails,

BrightIntegrator will continue with the next task

defined in the job. If the task failed is in a

transaction with other tasks, then

BrightIntegrator will omit the tasks in the same

transaction, and execute the next task that falls

outside of the transaction.

No

Default set to “no”

BrightIntegrator User‟s Manual Page 27 of 110

www.brightsoft.com.au Version 4.0.0

Elements in “job”

Element Name Description Required

task-entry The name of the task that will be executed in order of

appearance.

Yes

Attributes of “task-entry”

Attribute Description Required

name The name of the task to be executed. Yes

bt The begin transaction flag. Refer to overview in section

2.1 Transaction Support

No, default is zero

et The end transaction flag. Refer to overview in section

2.1 Transaction Support

No, default is zero

8.2 Tasks Configuration

Each task must have a name attribute, a source element, and a destination element. Here is

a sample task definition:

<task name=”MyTask”>

<source>BarcodeFile</source>

 <destination>BrightServerBarCodeTable</destination>

 <description>

 <![CDATA[Read barcode table records from file]]>

 </description>

</task>

Attributes of “task”

Attribute Description Required

name The name of the task. This name will be referred

to by the jobs.

Yes

Elements in “task”

Element Name Description Required

source The name of the data-set that will be read from, and

provide the data.

Yes

destination The name of the data-set that will be written to, and

receive the data.

Yes

description Provides a brief description of the task. No

old-source The name of the data-set that will be read from, in No, this element

BrightIntegrator User‟s Manual Page 28 of 110

www.brightsoft.com.au Version 4.0.0

addition to the source. Then difference between

both sets of data will be written to the destination.

Refer to overview in section 2.2 Calculating the

Difference.

will trigger the

difference

processing.

grouping

This element defines the relationships that will be

used to associated data into groups. See subsection

7.2.1 Grouping for details.

No, this element

will trigger the

group processing.

8.2.1 Grouping

A task may declare a grouping element that will trigger the group processing algorithm. This

will group associated data records together according to the relationships defined here. Refer

to overview in section 2.2 Grouping Data.

Here is a sample task definition that contains grouping:

<task name=”GroupTask”>

<source>OrdersFile</source>

 <destination>PIEServer</destination>

<grouping>

<relationship>

<src set="OrderHeader">

<key>OID</key>

</src>

<dst set="OrderItem">

<key>OID</key>

</dst>

</relationship>

</grouping>

</task>

The above sample extends the example use case discussed in Section 2.3 Grouping Data. In

this case, we have OrderHeader and OrderItem files arriving as the source. We want to group

the incoming data into orders, and the way that the data in the two files relates to each other,

is via the OID, or Order Identification Number. Each OrderHeader record contains a unique

OID. Each OrderItem shows that it belongs to an OrderHeader, by also having an OID.

Now relating this use case to the sample task-grouping element, we see that the grouping

element contains a relationship element. The grouping may contain one or more

relationships. The exact number of relationships required is equal to the number of sets in the

source data, minus one. In this use case we have two sets, OrderHeader and OrderItem.

Therefore we must define exactly one relationship.

The relationship element must contain a src (source) and a dst (destination) element. A

relationship is one-to-many, from source to destination. Both src and dst must have a name,

which corresponds to the name of a set in the incoming data, and a key element, which names

the field used to relate the two sets.

Elements in “grouping”

Element Name Description Required

BrightIntegrator User‟s Manual Page 29 of 110

www.brightsoft.com.au Version 4.0.0

relationship This element defines the relationship keys of the

source (parent) and destination (child) sets.

Yes, if grouping

is required.

Elements in “relationship”

Element Name Description Required

src The source set to be used in the relationship. Yes, if grouping

is required.

dst The destination set to be used in the relationship. Yes, if grouping

is required.

Attributes of “src”/”dst”

Attribute Description Required

set The name of the set in the incoming data. Yes, if grouping is

required.

Elements in “src”/”dst”

Element Name Description Required

key The name of the field that relates the two sets. Yes, if grouping

is required.

8.2.2 Transformations

A task may declare a <transformations> element that may contain a list transformation

defined by <transformation> elements. This will group associated data records together

according to the relationships defined here. Refer to overview in section 2.4 Transforming

Data.

Here is a sample task definition that contains transformation:

<task name=”TransformTask”>

<source>InData</source>

 <destination>OutData</destination>

 <transformations>

 <transformation set="OrderHeader" output-set="NewOrderHeader">

 <mapping>OrderHeaderTransformMapping</mapping>

 </transformation>

</transformations>

</task>

The above sample specifies a transformation that will transform the OrderHeader set read

from InData source and create a new NewOrderHeader set in the task data.

BrightIntegrator User‟s Manual Page 30 of 110

www.brightsoft.com.au Version 4.0.0

Attributes in “transformation”

Element Name Description Required

type Type of the transformation

“mapping” a transformation using a mapping

“script” a transformation using a script

No

(default is

“mapping”)

set Name of the set to be transformed No

output-set If the set is to be transformed into a new set, then

use this attribute to define the destination set name.

The transformed task data will contain a new set

with this name specified. If this attribute is not

specified, then the new transformed set, will replace

the input set.

No

mode Normally all of the transformations, by default, are

executed just before the data is written to its

destination data source. However using this

attribute, the mode (or the execution sequence) of a

transformation can be configured. The available

modes are as follows.

“source”: The transformation is executed just after

the data is read from the source.

“oldsource” : The transformation is executed just

after the data is read from the old source. The old

source data is compared with the source (latest

data) for difference processing.

“destination” : The transformation is executed just

after the data is written to its destination.

No

(default is

“destination”)

Elements in “transformation”

Element Name Description Required

mapping Name of the mapping to be used in

transformation. This is used of the type is of a

“mapping”.

Yes

script-name Name of the script to be executed for the

transformation. This is used only if the type is of a

“script”.

record-state This optional element allows the change of record

state of all the records in the set to be modified to

the state specified by the element. The valid

values are as follows.

No

BrightIntegrator User‟s Manual Page 31 of 110

www.brightsoft.com.au Version 4.0.0

A = Added – All the records will be marked as

added (new)

M = Modified – All the records will be marked as

modified (updated)

D = Deleted – All the records will be marked as

deleted (removed)

ignore-add This optional element allows the filtering the

records with the “added” (new) record status to be

excluded from the set (i.e. be removed from the

set).

The valid values are “yes” or “no”.

No

(Default value is

“no” if not

present)

ignore-modified This optional element allows the filtering the

records with the “modified” (updated) record

status to be excluded from the set (i.e. be removed

from the set).

The valid values are “yes” or “no”.

No

(Default value is

“no” if not

present)

ignore-deleted This optional element allows the filtering the

records with the “deleted” record status to be

excluded from the set (i.e. be removed from the

set).

The valid values are “yes” or “no”.

No

(Default value is

“no” if not

present)

8.3 Data Sets Configuration

Data sets define the locations where the actual data resides. The following is an excerpt of

the data-set layout:

<data-set name=”OrdersFile” type=”File”>

 <!—data-set details -->

</data-set>

Each data-set must have a name and a type attribute. An optional attribute is limit. This will

activate data chunking. See section 3.1 Data Iteration and Chunking for further details.

Attributes of “data-set”

Attribute Description Required

name The name of the data-set to be used by the task. Yes

type The type of the data-set. Can be a file,

BrightServer, Pronto, JDBC dara-set, Email, Push

or BrightForms accessor.

Yes

limit Defines the data chunking size. No

BrightIntegrator User‟s Manual Page 32 of 110

www.brightsoft.com.au Version 4.0.0

There are several types of data-sets that are available; these include ASCII files,

BrightServer™ tables, JDBC data sources, BrightForms accessor and more. Each data-set has

its own XML layout which will be detailed in the following sub-sections.

BrightIntegrator User‟s Manual Page 33 of 110

www.brightsoft.com.au Version 4.0.0

8.3.1 File

A File data-set contains a sets element, which itself contains one or more set elements. Each

set corresponds to a file. The following example extends the orders use case, having two

sets/files, comprising the new order data.

< data-set name=”OrdersFile” type=”File”>

<sets>

<set name="OrderHeader">

<file-name>E:/bi2/test/ORDER_HEADER.TXT</file-name>

<mapping>OrderHeaderCSVMapping</mapping>

</set>

<set name="OrderItem">

<file-name>E:/bi2/test/ORDER_ITEM.TXT</file-name>

<mapping>OrderItemCSVMapping</mapping>

</set>

</sets>

</ data-set>

Attributes of File “set”

Attribute Description Required

name The name of the set. Yes

Elements in File “set”

Element Name Description Required

file-name Contains the name of the file to be read or written to. This

filename may contain wildcard characters * and ?

When writing, the filename may contain the

BrightIntegrator value marker, for producing variable file

names. See section 8.3.6.1 for details.

When reading, if the filename starts with “http” then the

file will be treated as being read from a URL using http.

Yes

mapping The name of the mapping that will be used to map the data

fields in the file, and define the data types. See overview in

section 4.0 Data Mapping, and details in section 7.4

Mappings Configuration

Yes

append If set to yes, then when writing to this data-set, information

will be appended, if the file already exists. Otherwise the

file will be rewritten from the beginning.

No; defaults

to “yes”.

include-

header
If set to „yes‟, then when writing to this data-set, and if it is

a CSV or Fixed file, and if the file is being created without

append, then the first line will be the field names either

delimited by separators or in fixed length fields. If the

data-set is being read, then the first line will be ignored.

No; defaults

to false/no

after-read-

delete
If set to “yes” then every time this set/file has been

successfully read, the source file is deleted. This minimises

the housekeeping of files created by BrightIntegrator.

No

BrightIntegrator User‟s Manual Page 34 of 110

www.brightsoft.com.au Version 4.0.0

after-read-

copy-to
Specifies a file name. If this element is specified, then

every time this set/file has been successfully read, the

source file is copied using the specified file name.

No

after-write-

copy-to
Specifies a file name. If this element is specified, then

every time this set/file is successfully written, the

destination file is copied using the specified file name.

No

ignore-not-

exist
By default, an exception is thrown when the set/file to be

read does not exist. If this element is given as true/yes, and

if the file is missing for this set, then this set/file will be

ignored for reading data.

No; defaults

to false/no

multi-file

Accepted values “first-match” or “all”. This element

defines the behaviour when wildcard characters appear in

the file-name element. First-match is the default behaviour,

which means that the first file matching the filename

pattern will be taken as the filename for this set. If the

element value is “all”, then all files matching the filename

pattern will be read, and all their data appended to the set.

No ; defaults

to first-

match

xslt-file The mapping element must be set to “xml” for this element

to apply. This element optionally specifies a file name for

the XSL transform that will be applied to the XML output,

before the output file is written.

No

fop-output The xslt-file element must be specified for this element to

apply. This element optionally enables processing of XSL

Formatting Objects (XSL-FO). The result from the XSL

transformation is assumed to be a Formatting Object tree,

and BrightIntegrator renders the resulting pages in the

specified format. For details, see Appendix E – Formatting

Objects.

No,

accepted

values:

“pdf”,

“mif”, “pcl”,

“ps”, “txt”,

“svg”,

”print”

BrightIntegrator User‟s Manual Page 35 of 110

www.brightsoft.com.au Version 4.0.0

8.3.2 BrightServer™

A BrightServer™ data-set contains various elements which identify a server, its connection

parameters, and name the query to be run on the server. It also contains a sets element,

which itself contains one or more set elements. Each set corresponds to a server table. Here

is an example:

<data-set name="ServerTable1" type="BrightServer" limit=64>

<url>localhost:8080</url>

<username>bsadmin</username>

<password>changeit</password>

<query>Query1</query>

<sets>

<set name="TABLE1">

<table-name>TABLE1</table-name>

<mapping>Query1</mapping>

</set>

 </sets>

</data-set>

Note: BrightServer™ data-sets behave slightly different with respect to the data-set limit

attribute. If a non-zero positive number is specified, then data will always be read in chunks

of 64. So the value for the limit is effectively overridden to be 64.

Elements in BrightServer “data-set”

Element Name Description Required

url The IP address and port number for the

BrightServer™.

Yes.

use-ssl Instructs BrightIntegrator to initiate connection to

BrightServer via a secure https port specified in the

url string above.

No

Defaults set to

“no”/”false”

use-compression Instructs BrightIntegrator to turn the compression

ON when communicating with BrightServer. All

the data will be compressed before sent to server.

No

Defaults set to

“no”/”false”

username The user name that will be used to log in. Yes.

password The password that will be used to log in. Yes.

query The name of the query that will be run on the

BrightServer™. See Section 6.5 Queries

Yes

is-incremental If set to Yes, then only the incremental data will be

returned by the read. Otherwise, it will read

everything from this data set.

No

Defaults to

“no”/”false”

sets Contains one or more set elements. Yes

Attributes of BrightServer “set”

Attribute Description Required

name The name of the set that corresponds to a server

table.

Yes

BrightIntegrator User‟s Manual Page 36 of 110

www.brightsoft.com.au Version 4.0.0

Elements in BrightServer “set”

Element Name Description Required

table-name The name of the table for the set. This table will

feature in the data-set query above.

Yes.

mapping The name of the query mapping that will be used to

map the data fields in the server table, and define

the data types. See overview in section 4.0 Data

Mapping, and details in section 7.4 Mappings

Configuration

Yes

BrightIntegrator User‟s Manual Page 37 of 110

www.brightsoft.com.au Version 4.0.0

8.3.3 JDBC

A JDBC data-set contains various elements which identify a server, its connection

parameters, and name the query to be run on the server. It also contains a sets element,

which itself contains one or more set elements. Each set corresponds to a server table.

Here is an example:
<data-set name="JDBCBarCodeTable" type="jdbc" limit="5">

<url>jdbc:microsoft:sqlserver://server:port;

DatabaseName=dbname;SelectMethod=cursor</url>

<username>user</username>

<password>password</password>

<jdbc-driver>com.microsoft.jdbc.sqlserver.SQLServerDriver

</jdbc-driver>

<query>BarcodeQuery</query>

<sets>

<set name="tblBarcode">

<table-name>tblBarcode</table-name>

<mapping>BarcodeQuery</mapping>

</set>

</sets>

</data-set>

Elements in JDBC “data-set”

Element Name Description Required

url The JDBC URL used to connect to the data source. This

defines the database connection string.

Yes.

username The user name that will be used to log in. Yes.

password The password that will be used to log in. Yes.

jdbc-driver The name of the JDBC driver to be used to connect to this

data source. BrightIntegrator™ will load and instantiate

this driver, via the JDBC driver manager.

Yes.

query The name of the query that will be run on the data source.

See Section 7.5 Queries for more details.

Yes

sets Contains one or more set element. Yes

Attributes of JDBC “set”

Attribute Description Required

name The name of the set. Yes

Elements in JDBC “set”

Element Name Description Required

table-name The name of the table for the set. This table will

feature in the data-set query above.

Yes.

mapping The name of the mapping that will be used to map the

data fields in the server table, and define the data

types. See overview in section 4.0 Data Mapping, and

details in section 7.4 Mappings Configuration.

Yes

BrightIntegrator User‟s Manual Page 38 of 110

www.brightsoft.com.au Version 4.0.0

query The name of the query to be used to read this set. If

this element is not specified, then the main query of

the data source is used. If this is specified, then the

main query of the data source is not used (Since

Version 3.1.0)

Optional

8.3.3.1 Difference between the main <query> of the data-set and <query>

element of sets ?

When reading a single table using the JDBC accessor there is no difference between those

two elements. If the <query> element is not defined for the set, then BrightIntegrator will use

the <query> element defined for the <data-set> element. If the <set> element has its own

<query> element then, the main <query> will not be used at all.

There is however a very important difference when reading multiple tables (sets) from the

JDBC accessor. The <query> element defined for each <set> element will be used to define

the SQL query to fetch the result set from the JDBC data source. If a <query> element is

defined for the set, each set (i.e. each table), will use its own <query> element and

<mapping> to fetch the data, and the main <query> will be ignored.

If multiple tables are read, and each <set> does not have a <query> element defined for it,

then the main <query> element will be used repeatedly for each set to be read from the JDBC

source. The way the <query> is used in the instance is as follows.

Let‟s assume we have a parent table (table-1) and several children (table-2 ... table-n). The

following pseudo code is used to generate the SQL SELECT statement to fetch the data.

For each table-x

Include table-i mapping output as defined by the <mapping> element

 For i=0 to i-x

 Append conditions defined for table-i

 If (i>0) append table relationship for table-(i-1)  table-i

Example for a query containing P (parent table), C1 (child 1) and C2 (child 2) is given below.

To fetch P records the following SELECT statement will be constructed.

 Select <output columns defined for P>

 From P

 Where <P column conditions>

To fetch C1 records the following SELECT statement will be constructed.

 Select <output columns defined for C1>

 From P, C1

 Where <P column conditions> AND

<PC1 relationship> AND <C1 column conditions>

BrightIntegrator User‟s Manual Page 39 of 110

www.brightsoft.com.au Version 4.0.0

To fetch C2 records the following SELECT statement will be constructed.

 Select <output columns defined for C1>

 From P, C1, C2

 Where <P column conditions> AND

<PC1 relationship> AND <C1 column conditions> AND

 <C1C2 relationship> AND <C2 column conditions>

IMPORTANT NOTE: When defining query conditions, the above SQL generation must be

kept in mind. Since certain conditions may be included or excluded depending upon which

table is being read, some illegal SQL statements may be generated by BrightIntegrator as a

consequence.

8.3.3.2 How to specify parameterized date-time ranges for JDBC queries?

In order to specify a parameterised value which is determined at the run time, BV Bright

Software value markets can be used in the value string by the <value> element in the query

<condition> section. The possible combinations are as follows.

BV_DATE_; xBV

Where x is the minutes to be added (if a positive number is specified), or to be subtracted (if a

negative number is specified) from the current system time.

Example : For instance last 24 hours period can be specified using (60*24 = 1440 minutes, a

negative value specifies a date time value which is 1440 earlier than the current time)

BV_DATE_; -1440BV

BV_DATE_MIDNIGHT_; xBV

Where x is the minutes to be added (if a positive number is specified), or to be subtracted (if a

negative number is specified) from the last midnight time.

Example : For instance 12pm today can be specified using the following (60 minutes*12

hours from midnight= 720 minutes, a positive value specifies a 12 hour addition to the

midnight)

BV_DATE_MIDNIGHT_; 720BV

IMPORTANT NOTE: These BV values are only available for the JDBC queries.

BrightIntegrator User‟s Manual Page 40 of 110

www.brightsoft.com.au Version 4.0.0

8.3.4 Pronto

Bright Integrator can also connect to a Pronto data set via the PIE Connector. This allows

multiple API calls to the PIE, thus it has an additional configuration file for the API methods

to be called. Read Appendix A for further information on the API configuration file.

The Pronto data-set contains elements to identify the Pronto server, the location of the Pronto

API config file, the main set mapping to be used and the temporary file location details. Here

is an example:

<data-set name="ProntoServer" type="Pronto" >

<url>ProntoServerIP:1977</url>

<config-file>c:/bi2/conf/pronto_config.xml</config-file>

<main-set-mapping>OrderHeaderCSVMapping</main-set-mapping>

<tx-file-location>c:\bi2\conf\</tx-file-location>

 <sets>

 <set name="Number">

 <mapping>ApiMapping</mapping>

 </set>

 </sets>

</data-set>

Elements in Pronto “data-set”

Element Name Description Required

url The IP address and port number for the PIE server. Yes.

config-file The location of the additional config file dedicated for

this data-set. This file basically defines which Pronto

API methods are to be called, in response to the incoming

data. See Appendix A: API Configuration File for

details.

Yes.

main-set-mapping The name of the set that at the top of the relationship tree.

This is used for when grouped data is being consumed.

Yes.

tx-file-location

The directory that will be used to store some temporary

files. Some files are written to store state information

regarding what data has been successfully consumed.

This is useful in the case where an error occurs during

part of the way processing.

Yes.

sets Contains one or more set element. No

submit-empty-data By default empty data is not submitted, hence pre and

post task APIs are not executed. Use this element to

override the behaviour. When set to “yes”,

BrightIntegrator will execute the pre and post task APIs

even though the task data to be written is empty, i.e. it

does not contain any data for writing.

No

Default set

to “no”

Attributes of Pronto “set”

Attribute Description Required

BrightIntegrator User‟s Manual Page 41 of 110

www.brightsoft.com.au Version 4.0.0

name The name of the set. Yes

Elements in Pronto “set”

Element Name Description Required

table-name The name of the table for the set. This table will feature

in the data-set query above.

Yes.

mapping The name of the mapping that will be used to map the

data fields in the server table, and define the data types.

See overview in section 4.0 Data Mapping, and details in

section 7.4 Mappings Configuration.

Yes

BrightIntegrator User‟s Manual Page 42 of 110

www.brightsoft.com.au Version 4.0.0

8.3.5 Web Services

Bright Integrator can also connect to a Web Service provider. Similarly to the Pronto data-

set, it may use one or more API calls to the web service, and thus it also has an additional

configuration file for the API methods to be called. Read Appendix A for further information

on the API configuration file.

The Web Services data-set contains elements in common with the Pronto data-set, and further

in addition, it contains elements only associated with web service details. Here is an

example:

<data-set name="WebServer" type="webservices" >

<url>www.dataaccess.com/webservicesserver/conversions.wso</url>

<config-file>c:/bi2/conf/pronto_config.xml</config-file>

<main-set-mapping>OrderHeaderCSVMapping</main-set-mapping>

<tx-file-location>c:\bi2\conf\</tx-file-location>

<namespace-uri>http://www.dataaccess.com/webservicesserver/</namespace-uri>

<namespace-prefix>ns1</namespace-prefix>

<msg-type>rpc</msg-type>

<string-return-type>yes</string-return-type>

 <sets>

 <set name="Number">

 <mapping>ApiMapping</mapping>

 </set>

 </sets>

</data-set>

Elements in WebServices “data-set”

Element Name Description Required

url The url for the web service. It must contain the web

service context.

Yes.

config-file The location of the additional API config file dedicated

for this data-set. See Appendix A: API Configuration

File for details.

Yes.

main-set-mapping The name of the set that at the top of the relationship tree.

This is used for when grouped data is being consumed.

Yes.

tx-file-location The directory that will be used to store some temporary

files. Some files are written to store state information

regarding what data has been successfully consumed.

This is useful in the case where an error occurs during

part of the way processing.

Yes.

service-name The SOAP action URI for Axis RPC call. No

user-name The user name to use for this API call. No

user-password The password to use for this API call. No

namespace-uri The URI for the name space to use for this API call. No

namespace-prefix The prefix that is bound to the name space. No

BrightIntegrator User‟s Manual Page 43 of 110

www.brightsoft.com.au Version 4.0.0

use-ssl Whether to use SSL or not for connecting to the server.

Defaults to no.

No

truststore-filename The filename for the the trust store. Used for server

authentication.

No

truststore-password The password for the trust store. Used for server

authentication.

No

result-param Names the output parameter to be interpreted as the result

of the API call. Used for SOAP message web services.

No

msg-type Either msg (SOAP message web service) or rpc (RPC

type web service, use Axis Service Call). Defaults to rpc.

No

string-return-type Flag that defines whether to interpret the return value

from the RPC call as a string. Only used for RPC.

Defaults to no.

No

sets Contains one or more set element. No

submit-empty-data By default empty data is not submitted, hence pre and

post task APIs are not executed. Use this element to

override the behaviour. When set to “yes”,

BrightIntegrator will execute the pre and post task APIs

even though the task data to be written is empty, i.e. it

does not contain any data for writing.

No

Default set

to “no”

Attributes of Web Services “set”

Attribute Description Required

name The name of the set. Yes

Elements in Web Services “set”

Element Name Description Required

table-name The name of the table for the set. This table will feature

in the data-set query above.

Yes.

mapping The name of the mapping that will be used to map the

data fields in the server table, and define the data types.

See overview in section 4.0 Data Mapping, and details in

section 7.4 Mappings Configuration.

Yes

BrightIntegrator User‟s Manual Page 44 of 110

www.brightsoft.com.au Version 4.0.0

8.3.6 Email

BrightIntegrator can also connect to an Email data-set (i.e. send data as an email to specified

recipients or read email messages from specified in-boxes). This allows BrightIntegrator to

send escalation messages to the system administrator via email etc. With this email dataset,

you can configure the email format and also send the specific task data.

When the data is processed by the email accessor, it can be configured the process the data

either record by record (i.e. the record mode where each record is processed and sent as an

email), or as a whole task data (i.e. the taskdata mode where all the data will be processed

and sent in a single email). This is specified by the <process-by> element. See below.

Note that in the “record” mode, only a single set can be processed by the email accessor. If a

task data with more than one set is sent to the email accessor, then the email accessor will

report an exception. By default, the email accessor processes the data in the “taskdata” mode.

If the data is grouped, then each group‟s data is sent as separate emails for each group.

Here is a sample Email data-set configuration:

<data-set name="EscalationEmail" type="Email" >

 <host>205.214.83.216</host>

 <port>25</port>

 <to>admin@mail.com.au</to>

 <from>bi@mail.com.au</from>

 <cc-list>

 <cc>it_manager@mail.com.au</cc>

 </cc-list>

 <subject>RE:Successfully sent Order OID=BVOIDBV QTY=BVQty;###.##BV

 </subject>

 <body>

 <section execute="once" type="text">Dear customer,</section>

 <section execute="once" type="text"> </section>

 <section execute="once"

 type="text">Orders(BV_DATE_;dd/MM/yyBV)</section>

 <section execute="once"

 type="text">---------------------------</section>

 <section set="OrderItem" execute="always"

 type="text">Prd=BVProdBV OID=BVOIDBV

 QTY=BVQty;###.##BV</section>

 <section execute="once" type="file">/bi3/data/body_section1.txt</section>

 </body>

 <attachments/>

</data-set>

BrightIntegrator User‟s Manual Page 45 of 110

www.brightsoft.com.au Version 4.0.0

The email body will look like this:

Section 2

Section 6

Section 5

Section 4

Section 3

Section 1Dear customer,

OrderItems (24/Nov/2005)

Prod==2 OID=100 QTY=1

Prod==2 OID=100 QTY=1

Kind regards,

Bright Software

The following Email data-set is used to read the specified email account in-boxes:

<data-set name="Email" type="Email" >

<host>205.214.83.216</host>

 <port>25</port>

 <sets>

 <set name="OrderItem">

 <mapping>EmailMapping</mapping>

 <email-accounts>

 <email-account name="fred@slaterockandgravel.com">

 <password>flintstone</password>

 </email-account>

 <email-account name="barney@slaterockandgravel.com">

 <password>rubble</password>

 </email-account>

 </email-accounts>

 <delete-server-msgs>yes</delete-server-msgs>

 </set>

 </sets>

</data-set>

8.3.6.1 BV Value Place Holder

BV is the BrightIntegrator value marker, this is used by the Data Textualizer to define and

format the task data sent to the email accessor. It uses the standard number and dateTime

formatting concepts defined in this document. You can use different files to define the

different body section elements of the email accessor.

BV places holder can be used in couple of ways.

a) A field places holder. In this case, the field name is placed between BV pairs. For

example if the value of the “Prod” field from the “OrderItem” set is to be textualized

or printed, then BVProdBV is used.

b) For system wide values such as current system date and time is to be specified, then a

system constants are used. Currently the following constants are defined.

BrightIntegrator User‟s Manual Page 46 of 110

www.brightsoft.com.au Version 4.0.0

An optional format field can be specified by a BV place holder. To specify the format of

the field, use a semicolon („;‟) after the field name or system constant and specify the format

for the field. This format field would be for date-time value or numeric field. For example

below BV value will read the system time and convert it to a date-time string in dd/MM/yy

format.

BV_DATE_;dd/MM/yyBV

8.3.6.2 <body> Element

<body> element is consisted of sections. Each section is defined by a <section> element. The

attributes of the <section> element are as follows.

Attribute Description Required

execute Section‟s execution type

once : The section appears only once in the text

always : The section is repeated for each record in the set

specified by the set attribute.

Yes

type The type specifies the source of the text.

text : The section element contains the actual text. This

text may contain BV place holders.

file : The section text is read from the file and processed.

The section element contains the file name in this case.

Yes

set Name of the set to be processed by this section. If a set

name is specified, each record is converted into text using

this section definition.

No

Elements in Email “data-set”

Element Name Description Required

host Email host address. This can be overwritten by the Yes

port Email server port number. This is set to default Port “25”.

Does not need to be specified.

Yes

Constant Description

DATE Returns the current system date and time

NUN Returns the next unique number. The next unique

number is calculated using the milliseconds passed

since midnight 1 January 1970. BrightIntegrator

ensures that a distinct number is returned each time,

if a record happens to have been processed in the

same millisecond.

NULL Returns a “null” value

_DATE_MIDNIGHT_ Returns the starting time of today. i.e. today‟s date

with 00:00:00.000 time.

BrightIntegrator User‟s Manual Page 47 of 110

www.brightsoft.com.au Version 4.0.0

to Email address of the person to which the email is to be

sent. This text may contain BV place holders.

Yes

from Email address of the person who is sending the email. Yes

cc-list List of email addresses of the persons to which the email

is to be carbon-copied to.

No

subject Subject of the email Yes

body Body of the email. This is segmented into body sections.

You can list as many sections as required.

No

attachments Name of the file that can be sent with the email. This is

optional.

No

process-by This specifies how the task data is to be processed by the

email accessor. Available options for this element are as

follows.

record: Every record in a recordset is sent as a email

separate email

taskdata: Whole task data is to be sent as a single email.

If the data is grouped, then each group‟s task data is sent

as a single email.

No

Default =

taskdata
i.e. whole

task data is

sent as a

single

email.

sets Contains one or more set element. No

Elements in “cc-list”

Element Name Description Required

cc Email address of the person to which the email is to be

carbon-copied to. This text may contain BV place

holders.

Yes

Elements in “body”

Element Name Description Required

section Specifies a section of the body element that is to be

executed in order of appearance.

Yes

Attributes of “section”

Element Name Description Required

execute Defines if the body section is to be executed “once” or

“always”.

Yes

type Defines the type of the body section, possible values are

“text” or “file”. If “file”, the body section value should

specify a file name for the body section to be executed.

Yes

Elements in “attachments”

Element Name Description Required

BrightIntegrator User‟s Manual Page 48 of 110

www.brightsoft.com.au Version 4.0.0

attachment Specifies the file name to be attached to this email. This

text may contain BV place holders. A physical file

content or a value of the record can be attached as an

attachment to the email. This is determined by the field

attribute of the attachment element. See below.

Yes

Attributes of “attachment”

Element Name Description Required

name The name of the attachment as it appears in the email,

which can be different to the file name specified by the

attachment element. If this attribute is not specified,

then, by default, the file name will be used as the

attachment name. This text may contain BV place

holders.

No

field Name of the record field to be sent as an attachment to

the email. If this attribute is not present or empty, then

the attachment element contains the name of the

physical file to be sent as an attachment with the email.

No

Attributes of Email “set”

Attribute Description Required

name The name of the set. Yes

Elements in Email “set”

Element Name Description Required

email-accounts Contains one or more email-account elements. Yes.

mapping The name of the mapping that will be used to map the

email messages.

Yes

Attributes of Email “email-account”

Attribute Description Required

name The name of the email account, which is used to log in to

the mail server and access the user inbox.

Yes

Elements in Email “email-account”

Element Name Description Required

password The password of the email account, which is used to log

in to the mail server and access the user inbox.

Yes.

BrightIntegrator User‟s Manual Page 49 of 110

www.brightsoft.com.au Version 4.0.0

8.3.7 Push

Bright Integrator can also connect to a Push data-set. This allows BrightIntegrator to use the

Push Module and send published data to a list of subscribers. The Push data-set simply

defines the configuration file to be used by the Push Module.

Here is an example:

<data-set name="Push" type="Push" >

<config-file>/bi/conf/fileconfig.xml</config-file>

</data-set>

Elements in Push “data-set”

Element Name Description Required

config-file Name of the Push Module configuration file to be

executed by the P&S module.

Yes

See Section 5 and 8 for details on the Push Module elements and attributes.

BrightIntegrator User‟s Manual Page 50 of 110

www.brightsoft.com.au Version 4.0.0

8.3.8 BrightForms

Bright Integrator can also connect to a BrightForms data set. This allows the job processor to

send and receive data to and from a BrightForms client.

The following is a sample XML configuration for a BrightForms data-set.
<data-set name="PushToBF" type="brightforms">

<server>192.168.39.58</server>

<port>8080</port>

<message-type>data</message-type>

<use-compression>yes</use-compression>

<client-column-names>FIELD1,FIELD3</client-column-names>

<client-column-values>_#BFValue_UN_,LocalDesc</client-column-values>

</data-set>

Elements in BrightForms “data-set”

Element Name Description Required

server The IP address of the BrightForms client. Yes

port The port number on which the client listens for the

messages.

Yes

message-type Specifies whether the data will be pushed with the

message or the name of the sync rule to be sent to to the

BrightForms client. Possible types are “data” or “sync-

rule”

Yes

client-column-names This attribute is used if the message-type is “data”. It

specifies the names of the client columns of which values

are passed from the BrightForms data-set to the client.

This is used to populate the required client columns that

does not exists in the actual task data. See the table below

for the definition of BrightForms Special System Column

Values.

No

client-column-values These are the actual client column values used by the

BrightForms client to populate the local client columns in

the database. This attribute is only used if the message-

type is “data”.

Please see the table below for generating special values

using the special system column values.

No

sync-rules This lists the names of the sync rules that will be used by

the BrightForms client to pull data from the server. It

may contain multiple comma separated sync rule names.

This attribute is used only if the message-type attribute is

“sync-rule”.

Yes if

message-

type is

“sync-rule”

use-compression Specifies if the data is to be compressed if the message-

type is “data”.

No

BrightIntegrator User‟s Manual Page 51 of 110

www.brightsoft.com.au Version 4.0.0

BrightForms Special System Column Values

BrightForms will generate the corresponding values, when it encounters these special place

holders

Value Holder Description

_#BFValue_UN_ Generates and uses the next unique number for the column value

_#BFValue_Null_ Puts “null” as the column value

_#BFValue_SD_ Puts the current System Date and time as the column value

NOTE: Column names are case insensitive.

<bf-message> format

BrightForms accessor will operate in “writer” mode and push the data to the designated

BrightForms client. It will convert the task data to the standard BrightForms packed XML

format and send it using the <bf-message>.

Using the <bf-message>, BrightForms accessor can push actual data or get BrightForms to

pull data by specifying the sync rules that BrightForms needs to execute. The message format

for pushing task data is given below. Note that type attribute is set to “data”. The message

contains a task-data element which will contain the standard BrightForms data element for

sending records to BrightForms. If the compression attribute is set to “on”, then it will

contain the compressed data element in base64 format.

<bf-message version="1.0" type="data">

 <task-data compression="off">

 <data>

 <table name="TABLE1">

 <columns>

 <col type="int">FIELD1</col>

 <col type="string">FIELD2</col>

 <col type="string">FIELD3</col>

 </columns>

 <records>

 <record>

 <item>10</item>

 <item>Item 10</item>

 <item>Description 10</item>

 </record>

 <record>

 <item>11</item>

 <item>Item 11</item>

 <item>Description 11</item>

 </record>

 <record>

 <item>12</item>

 <item>Item 12</item>

 <item>Description 12</item>

 </record>

 </records>

 </table>

 </data>

 </task-data>

</bf-message>

BrightIntegrator User‟s Manual Page 52 of 110

www.brightsoft.com.au Version 4.0.0

For triggering data pull by BrightForms an another type <bf-message> is available, which is

also given below. This message type is configured by setting the type attribute to “sync-

rule”.

The sync-rule element within the message contains the comma separated name of the sync

rules to be executed by the BrightForms to pull data.

<bf-message version="1.0" type="sync-rule">

 <sync-rule>SyncGetJobs,SyncGetCustomerList </sync-rule>

</bf-message>

Background synchronisation and BrightIntegrator

The use of BrightForms accessor in BrightIntegrator should also be incorporated within the

mobile application created in BrightBuilder. If using data as the message-type, then the Push

Listener option in the mobile application should be enabled. If using sync-rule as the

message-type, then the Background Synchroniser option should also be enabled.

With the Push Listener and Background Synchroniser enabled, this allows the BrightForms

client to listen for the sync-rule to be executed and run a background synchronisation.

The sync rules used in the BrightIntegrator configuration file should have already been

enabled and made as a background sync rule in the application. When BrightIntegrator

triggers the data pull to BrightForms, BrightForms will then trigger the background

synchronisation process to send the data to BrightServer.

There are several considerations to be made if using the data pull mechanism of

BrightIntegrator, these are as follows:

 Both the “Enable Background Synchroniser” and “Enable Push Listener” properties

of the application project is true.

 All sync rules to be executed has been enabled and the background sync-rule flag is

true.

 All the devices have unique IP addresses.

Read more about the Background Synchronisation process from BrightBuilder‟s Users

Manual.

BrightIntegrator User‟s Manual Page 53 of 110

www.brightsoft.com.au Version 4.0.0

8.3.9 Script

Using JavaScript in the system will provide extreme flexibility and power. This will enable

users to consume or provide data to and from non-conventional data sources.

The scripting support will be provided by using the standard existing “accessor” architecture.

This fits seamlessly into existing BrightIntegrator world. Using this new accessor will be

used in the same manner similar to a JDBC accessor. It will be instantiated and used by the

sync engine as normal.

The following is a sample XML configuration for a script data-set.

<data-set name="MyScriptDataSource" type="script">

 <script-name>myscript</script-name>

 <query-name>MyScriptQuery</query-name>

 <sets>

 <set name="BI_TEST">

 <mapping>Mapping_BI_TEST</mapping>

 </set>

 <set name="BI_TEST_CHILD">

 <mapping>Mapping_BI_TEST_CHILD</mapping>

 </set>

 </sets>

</data-set>

Elements in BrightForms “data-set”

Element Name Description Required

script-name Name of the script to be executed Yes

query-name Name of the query that will provide payload. The query

will most likely a user defined one. See section 8.5.1

No

sets Contains one or more set elements. If they are not

defined, then the script is expected to return mapping

(FieldInfo) back to accessor.

No

Attributes of script “set”

Attribute Description Required

name The name of the set. Yes

Elements in script “set”

Element Name Description Required

mapping The name of the mapping that will be used to map the

data fields. This could any of the following mapping

types: Query, CSV file, or fixed file.

Yes

BrightIntegrator User‟s Manual Page 54 of 110

www.brightsoft.com.au Version 4.0.0

8.4 Mappings Configuration

The mappings element contains one or more mapping elements. The purpose of a mapping

is to provide a unique, logical name for each data field. A mapping element must contain a

name and a type attribute. It also contains a fields element, containing field elements.

Each field element must contain a name and (data) type attribute. Optionally a field can be

declared as being a primary key (pk=1).

The possible internal data types for each field are: (the names themselves are case-

insensitive)

 string

 int

 boolean

 double

 dateTime

 base64Binary

 rawBinary

There are several types of mappings. They will be detailed in the following sub-sections.

8.4.1 CSV (Character Separated Value) File Mapping

The CSV file type mapping provides the details about the field specific format, as well as the

data type mapping. An example of a CSV file type mapping follows:

<mapping name="BarCodeCSVMapping" type="csv">

<fields sep="," esc='"'>

<field name="barcode" type="string" pk='1'>

<format/>

</field>

<field name="stock_code" type="int" pk='1'>

<format>00000000</format>

</field>

<field name="description" type="string">

<format/>

</field>

</fields>

</mapping>

Attributes of CSV “fields”

Attribute Description Required

sep

Defines the character that will be used to separate

the values in the file.

No; defaults to

comma

esc Defines the character used to escape from the

separator character. This is useful if the data

itself contains the separator character.

No; defaults to

double quote.

BrightIntegrator User‟s Manual Page 55 of 110

www.brightsoft.com.au Version 4.0.0

always-esc If this flag is set to “yes”, then all the fields in the

CSV output will be enclosed with the escape

character specified by the “esc” attribute (See

above).

No; defaults

always to “no”

The “esc” character acts as a delimiter when the separator or escape character is embedded

within the field values. The following rules are applied when inserting the escape character:

1. Each field may be enclosed in double quotes if you wish, i.e. write a field as the

dog or “the dog”.

2. Any field that contains a comma must be surrounded by quotes.

3. Any field that contains double quotes (“) must be enclosed in double quotes and

escape the double quotes in the field by preceding it with another double quote, e.g.

the field big “brown” fox should be entered as “big ““brown”” dog”.

4. Spaces within a field are significant, i.e. the 2 fields the piano and the piano

are not equivalent since the second one contains two spaces between each word.

5. If a field is quoted, there cannot be any spaces between the leading and trailing

commas and the enclosing double quotes, i.e. the two consecutive fields the dog and

the cat should be entered as “the dog”,”the cat” or the dog,the cat

and not “the dog” , “the cat”.

For example, a table contains the following values:

ID NAME NOTES

1 Jane I have a cat, a dog and a bird.

2 John He sang ”Moon River”

3 Grey No notes

If these records were exported using a csv mapping with comma as the separator and double-

quotes (“) as the escape character, the file will look like this:

1,Jane,“I have a cat, a dog and a bird.”
2,John,“He sang “””Moon River”””
3,Grey,No Notes

If the “always-esc” is set then the output would like as follows.

“1”,”Jane”,“I have a cat, a dog and a bird.”
“2”,”John”,“He sang “””Moon River”””
“3”,”Grey”,”No Notes”

Attributes of CSV “field”

Attribute Description Required

name The name of the field, which will be used to

identify the data elsewhere in the configuration

file.

Yes

type The internal data type of the field. Yes

status Set to true indicates that this field holds the

change status for the whole record. The value

No; defaults to

false/no.

BrightIntegrator User‟s Manual Page 56 of 110

www.brightsoft.com.au Version 4.0.0

may be “A” for added, “M” for modified, or “D”

for deleted. In this way, a diff result may be

written to file, or an incremental file may be read.

pk Set to true/yes, defines this field as a primary key. No; defaults to

false/no.

file-external Set to true/yes, defines this field as sourcing its

data in an external file.

No; defaults to

false/no.

file-path If file-external is true, then this attribute defines

the path containing the external files for this field.

No; enabled by

file-external.

file-name-

embedded
If file-external is true, then this attribute set to

true/yes declares that the file-name to be used for

this field is embedded in the main file.

No; enabled by

file-external.

Default is No.

file-path-

embedded
Used only for writing. If file-external is true, then

this attribute set to true/yes declares that the file-

path to be used for this field is embedded in the

main file being written.

No; enabled by

file-external.

Default is No.

file-name If file-external is true, then this attribute contains

the filename for this field with file-path. This

filename may use the BrightIntegrator value

marker to create variable file names for each

record.

No; enabled by

file-external. Can

be omitted if file-

name-embedded is

set to true/yes

file-must-exist If file-external is true, and this attribute is set to

true/yes, then if the external file for this field does

not exist, a error will be generated. Used for only

for reading.

No; enabled by

file-external.

Default is No.

Elements in CSV “field”

Element Name Description Required

format The format of the field. See section 8.9 Data

Value Formatting

Yes.

trim Specifies if the string field value will be trimmed. No

convert-to-null If this element is present, then its string value is

used in this field to interpret null values.

No

compress This is an instruction to the file accessor to

compress the field value when reading or writing.

If this element is present and set to “yes”, then

when reading a binary file, the content of the file

will be read and compressed before assigned to the

field; when writing the content of the binary field

it will be compressed before it is written to the

output file.

No

decompress This is an instruction to the file accessor to

compress the field value when reading or writing.

No

BrightIntegrator User‟s Manual Page 57 of 110

www.brightsoft.com.au Version 4.0.0

If this element is present and set to “yes”, then

when reading a binary file, the content of the file

will be read and decompressed before assigned to

the field; when writing the content of the binary

field it will be decompressed before it is written to

the output file.

BrightIntegrator User‟s Manual Page 58 of 110

www.brightsoft.com.au Version 4.0.0

8.4.2 Fixed-field-length File Mapping

The fixed-field-length file type mapping provides the details about the field specific format,

as well as the data type mapping.

An example of a fixed-field-length file type mapping follows:

<mapping name=" BarCodeFixedMapping" type="fixed">

<fields>

<field name="barcode" type="string" pk='1'>

<format/>

<start>1</start>

<length>24</length>

<pad-char/>

</field>

<field name="stock_code" type="string" pk='1'>

<format/>

<start>25</start>

<length>10</length>

<pad-char/>

</field>

<field name="description" type="string">

<format/>

<start>36</start>

<length>1</length>

<pad-char/>

</field>

</fields>

</mapping>

Note: The length of the last field in a fixed-field-length file is effectively ignored. When the

last field is to be read, the data reader will read all of the remaining characters on the line, for

parsing the field value.

Attributes of fixed-field length “field”

Attribute Description Required

name The name of the field, which will be used to

identify the data elsewhere in the configuration file.

Yes

type The internal data type of the field. Yes

status Set to true indicates that this field holds the change

status for the whole record. The value may be “A”

for added, “M” for modified, or “D” for deleted. In

this way, a diff result may be written to file, or an

incremental file may be read.

No; defaults to

false/no.

pk Set to true/yes, defines this field as a primary key. No; defaults to

false/no.

BrightIntegrator User‟s Manual Page 59 of 110

www.brightsoft.com.au Version 4.0.0

file-external Set to true/yes, defines this field as sourcing its data

in an external file.

No; defaults to

false/no.

file-path If file-external is true, then this attribute defines the

path containing the external files for this field.

No; enabled by

file-external.

file-name-

embedded
If file-external is true, then this attribute set to

true/yes declares that the file-name to be used for

this field is embedded in the main file.

No; enabled by

file-external.

Default is No.

file-path-

embedded
Used only for writing. If file-external is true, then

this attribute set to true/yes declares that the file-

path to be used for this field is embedded in the

main file being written.

No; enabled by

file-external.

Default is No.

file-name If file-external is true, then this attribute contains

the filename for this field with file-path. This

filename may use the BrightIntegrator value marker

to create variable file names for each record.

No; enabled by

file-external. Can

be omitted if file-

name-embedded

is set to true/yes

file-must-exist If file-external is true, and this attribute is set to

true/yes, then if the external file for this field does

not exist, a error will be generated. Used for only

for reading.

No; enabled by

file-external.

Default is No.

Elements in fixed-field length “field”

Element Name Description Required

format The format of the field. See section 8.9 Data Value

Formatting

Yes.

start The (one-based) index of the first character. Yes.

length The character length of the field. Yes.

pad-char The character that is used to pad the field, should the

data content be shorter then the length of the field.

Yes.

trim Specifies if the string field value will be trimmed. No

convert-to-null If this element is present, then its string value is used in

this field to interpret null values.

No.

compress This is an instruction to the file accessor to compress the

field value when reading or writing.

If this element is present and set to “yes”, then when

reading a binary file, the content of the file will be read

and compressed before assigned to the field; when

writing the content of the binary field it will be

compressed before it is written to the output file.

No

decompress This is an instruction to the file accessor to decompress

the field value when reading or writing.

No

BrightIntegrator User‟s Manual Page 60 of 110

www.brightsoft.com.au Version 4.0.0

If this element is present and set to “yes”, then when

reading a binary file, the content of the file will be read

and decompressed before assigned to the field; when

writing the content of the binary field it will be

decompressed before it is written to the output file.

BrightIntegrator User‟s Manual Page 61 of 110

www.brightsoft.com.au Version 4.0.0

8.4.3 XML File Mapping

The XML file type mapping specifies the as well as the data type mapping. This mapping

simply instructs for the data to be formatted in XML.

There are no definable fields in this mapping, since the data is self described in the XML, as

meta-data.

The XML output conforms to the TaskData XML format. Refer to Appendix F for details.

In combination with this mapping type, the file data set can optionally define an XSL

transform file that will be applied before the output file is written.

<mapping name="XMLMapping" type="xml"/>

BrightIntegrator User‟s Manual Page 62 of 110

www.brightsoft.com.au Version 4.0.0

8.4.4 Query Mapping

The query mapping maps from the server table column names and data types to the internal

field names and data types. An example of a query type mapping follows:

<mapping name="JDBCQuery" type="query">

<fields>

<field name="F_INT" type='int' pk='1'>

<column-name>F_INT</column-name>

</field>

<field name="F_STRING" type='string'>

<column-name>F_STRING</column-name>

</field>

<field name="F_BOOLEAN" type='boolean'>

<column-name>F_BOOLEAN</column-name>

</field>

<field name="F_DOUBLE" type='double'>

<column-name>F_DOUBLE</column-name>

</field>

<field name="F_DATETIME" type='datetime'>

<column-name>F_DATETIME</column-name>

</field>

</fields>

</mapping>

Attributes of “field”

Attribute Description Required

name The name of the field, which will be used to

identify the data elsewhere in the configuration file.

Yes

type The internal data type of the field. Yes

pk Set to true/yes, defines this field as a primary key. No; defaults to

false/no.

Elements in “field”

Element Name Description Required

table-name Name of the table from which the columns is

sourced (Since version 3.1.0).

Optional

column-name The name of the table column for the field. Yes.

compressed Option element that tells BI if the field contains

compressed data. If this field is being read, then the

data will be uncompressed after it is read. If the

field is being written, then the data will be

compressed before it is written,

No.

compress This is an instruction to the JDBC accessor to

compress the field value when reading or writing.

No

BrightIntegrator User‟s Manual Page 63 of 110

www.brightsoft.com.au Version 4.0.0

If this element is present and set to “yes”, then when

reading a binary file, the content of the column will

be read and compressed before assigned to the field;

when writing the content of the binary field it will

be compressed before it is written to the destination

column.

decompress This is an instruction to the JDBC accessor to

compress the field value when reading or writing.

If this element is present and set to “yes”, then when

reading a binary blob column, the content of the

column will be read and decompressed before

assigned to the field; when writing the content of

the binary field it will be decompressed before it is

written to the destination column.

This is equivalent to “compressed” option. They can

be used interchangeably to read a compressed

column value and decompress it.

No

BrightIntegrator User‟s Manual Page 64 of 110

www.brightsoft.com.au Version 4.0.0

8.4.5 API Mapping

The API mapping maps from API call parameters and data types to the internal field names

and data types. An example of an API type mapping follows:

<mapping name="ApiMapping" type="api">

<fields>

<field name="F_INT" type='int' pk='1'>

<param-name>paramInt</param-name>

</field>

<field name="F_STRING" type='string'>

<param-name>paramString</param-name>

</field>

<field name="F_BOOLEAN" type='boolean'>

<param-name>paramBoolean</param-name>

</field>

<field name="F_DOUBLE" type='double'>

<param-name>doubleParam</param-name>

</field>

<field name="F_DATETIME" type='datetime'>

<param-name>datetimeParam</param-name>

</field>

</fields>

</mapping>

Attributes of “field”

Attribute Description Required

name The name of the field, which will be used to

identify the data elsewhere in the configuration file.

Yes

type The internal data type of the field. Yes

pk Set to true/yes, defines this field as a primary key. No; defaults to

false/no.

Elements in “field”

Element Name Description Required

param-name The name of the table column for the field. Yes.

param-type Optional element, accepted value is “set”. In this

case the incoming data from the web service is

interpreted as an XML string for this output

parameter. The XML will be expected to be a

TaskData XML object. Otherwise, an XSL

transform can be applied beforehand, see below.

No.

xslt-file Optional element, param-type must be set. If this

element is included then it names the file that

contains the XSL transform that will be applied to

the XML data coming back from the web service.

The result will be interpreted as a TaskData XML

object.

No.

BrightIntegrator User‟s Manual Page 65 of 110

www.brightsoft.com.au Version 4.0.0

8.4.6 Email Mapping

The Email mapping maps from email messages to the internal field names and data types.

An example of an Email type mapping follows:

<mapping name="EmailMapping" type="email">

<fields>

 <field name = "ID" type='string' pk='1'>

 <source>msg-id</source>

 <length>50</length>

 </field>

 <field name = "To" type='string' pk='1'>

 <source>to</source>

 <length>200</length>

 </field>

 <field name = "From" type='string'>

 <source>from</source>

 <length>200</length>

 </field>

 <field name = "DateSent" type='datetime'>

 <source>date</source>

 </field>

 <field name = "Subject" type='string'>

 <source>subject</source>

 <length>100</length>

 </field>

 <field name = "Body" type='string'>

 <source>body</source>

 <length>4096</length>

 </field>

 <field name = "Attach" type='string'>

 <source>attachment-list</source>

 <length>4096</length>

 </field>

</fields>

</mapping>

Attributes of “field”

Attribute Description Required

name The name of the field, which will be used to

identify the data elsewhere in the configuration file.

Yes

type The internal data type of the field. Yes

pk Set to true/yes, defines this field as a primary key. No; defaults to

false/no.

BrightIntegrator User‟s Manual Page 66 of 110

www.brightsoft.com.au Version 4.0.0

Elements in “field”

Element Name Description Required

source The message item to be used for this field.

Acceptable entries are:

 msg-id – unique identifier for the message

 to – recipient of the email message

 from – sender of the email message

 date – date/time that email was

 subject – of the email message

 body – of the email message

 attachment-list – a comma separated list of

the names of the email attachments. Only

the names are passed, not the attachment

data items themselves.

Yes.

length Optional element. If this is specified, then it will

limit the length of the data that will be passed on.

For example, if the length of the email message

body is specified as “4096”, then the maximum

length string that be passed in the body field will be

4096 characters.

No.

BrightIntegrator User‟s Manual Page 67 of 110

www.brightsoft.com.au Version 4.0.0

8.4.7 Text File Mapping

The file mapping is used to convert task data to a text. An example of a query type mapping

follows:

<mapping name="OrderHeaderTextMapping" type="text">

 <body>

 <section execute="once" type="text">Dear BVCustBV,</section>

 <section execute="once" type="text"> </section>

 <section execute="once" type="text">-----------------------</section>

 <section execute="always" type="text">Order==BVOIDBV</section>

 <section execute="once"

type="file">/cvs/bi2/testdata/body_section1.txt</section>

 </body>

</mapping>

This mapping uses the data to textualizer feature of BrightIntegrator that is also used by the

email accessor. Please see Section 8.3.5 for the definition of the <body> element.

8.4.8 Transformation Mapping

This the mapping definition used to transform task data sets:

<mapping name="HeaderTransformMapping" type="transformation">

<fields>

 <field name = "OID" type='int' pk='1'>

 <src-type>bi</src-type>

 <set-name>OrderHeader</set-name>

 </field>

 <field name = "Cust" type='string'>

 <src-type>bi</src-type>

 <set-name>OrderHeader</set-name>

 </field>

 <field name = "Extra" type='string'>

 <src-type>bi</src-type>

 <set-name>OrderHeader</set-name>

 </field>

 <field name = "CustDuplicate" type='string'>

 <src-type>bi</src-type>

 <set-name>OrderHeader</set-name>

 <field-name>Cust</field-name>

 <post-function>ReplaceChar,176,"DegreeC"</post-function>

 </field>

 <field name = "NewString" type='string'>

 <src-type>constant</src-type>

 <value>AU</value>

 </field>

 <field name = "NewDate" type='datetime'>

 <src-type>constant</src-type>

 <value>1966/04/18</value>

 <format>yyyy/MM/dd</format>

 </field>

 <field name = "COUNTRY_CODE" type='int'>

 <src-type>constant</src-type>

 <value>1</value>

 </field>

</fields>

</mapping>

BrightIntegrator User‟s Manual Page 68 of 110

www.brightsoft.com.au Version 4.0.0

Attributes of “field”

Attribute Description Required

name The name of the field, which will be used to

identify the data elsewhere in the configuration file.

Yes

type The internal data type of the field. Yes

pk Set to true/yes, defines this field as a primary key. No; defaults to

false/no.

Elements in “field”

Element Name Description Required

src-type This determines the source type of this field.

Possible source type are as follows.

“bi” : This means that the field value is to be

sourced from one of the fields in the set specified

by the <set-name> element.

“constant” : This means that the field value is the

constant value specified by the <value> element.

“expression” : This means that the field value

contains an expression using BV Bright Software

value markers. Couple of possible use case are as

follows.

Example 1 : An expression that can be used to

specify a column value which will contain the next

unique number generated by BrightIntegrator.

BV_NUN_BV

Example 2 : An expression to concatenate two text

fields into a single field. Note NAME and

SURNAME are the existing fields in the data set.

Also note the space between the fields.

BVNAMEBV BVSURNAMEBV

Example 3 : A numeric expression to calculate the

total cost based on the quantity and price. Note that

QTY and PRICE are the existing fields in the data

set. Also note the multiplication char “*”.

BVQTYBV*BVSURNAMEBV

Example 4 : A numeric expression to calculate the

profit based on the cost and sell prices. Note that

COST and SELL_PRICE are the existing fields in

Yes.

BrightIntegrator User‟s Manual Page 69 of 110

www.brightsoft.com.au Version 4.0.0

the data set. Also note the subtraction char “-”.

BVSELL_PRICEBV-BVCOSTBV

Example 5 : An expression that converts a field that

contains temperature in degrees Celsius to degrees

Fahrenheit. Note that CELSIUS is the existing field

in the data set.

BVCELSIUSBV*1.8 + 32

Note that the available mathematical operations are

+, -, *, /. Parenthesis (i.e „(„ and „)‟) can be used.

See Section “8.3.6.1 BV Value Place Holder” for

available place holder.

set-name Specifies the name of the set from which the field

values is to be fetched.

Yes only if the

src-type is “bi”,

otherwise not

required

field-name Specifies the name of the field to be fetched from

the set specified using the “set-name” element.

If this element is not specified, then the name of the

transformation field (specified by the “name”

attribute of the <field> element) will be assumed to

the same with the field name to be read.

By using this, the incoming field name can be

changed to the name specified by the field name.

No

Used only the

src-type is bi

value This is the element that contains the constant value. Yes only if the

src-type is

“constant”,

otherwise not

required

format This specifies the format of the value specified by

the <value> element.

No

Only used with

<value> element

if the src-type is

constant.

post-function This element allows the execution of a specific

function for the further transformation of the field

value. This is available for all field types in the

transformation mapping.

This element, for instance, could be used to replace

or to remove invalid characters from the field value

before it is sent to BrightServer by using the

example following functions:

No

BrightIntegrator User‟s Manual Page 70 of 110

www.brightsoft.com.au Version 4.0.0

The following function will replace all of the degree

special characters (“°”) with “DegreeC” string.

ReplaceChar, 176, “DegreeC”

The following function will remove the special

degree character altogether from the field.

RemoveChar,176

See Appendix G for the list of available functions

with syntax and examples.

BrightIntegrator User‟s Manual Page 71 of 110

www.brightsoft.com.au Version 4.0.0

8.5 Queries

IMPORTANT NOTE: Use BrightBuilder‟s “QueryExport As Text” tool (mouse right

click on the query name icon in BrightBuilder) to use queries created in BrightBuilder in your

BrightIntegrator configuration file. This will eliminate manual creation of query objects for

BrightIntegrator query definitions.

Queries are used by BrightServer™ and JDBC data sets to help define what data is to be

transferred. The queries element contains one or more query elements. Below is a sample.
<query name="Query1">

<tables>

<table type="parent">ORDERS</table>

<table type="child">ORDER_LINES</table>

</tables>

<relationships>

<relationship>

<source name="ORDERS" type="parent" multiplicity="one">

<key>

<column order="1">ORDER_NO</column>

</key>

</source>

<source name="ORDER_LINES" type="child" multiplicity="many">

<key>

<column order="1">ORDER_NO</column>

</key>

</source>

</relationship>

</relationships>

<condition operator="AND">

<expression p="n">

<table-name>ORDERS</table-name>

<column-name>DEVICE_ID</column-name>

<op>eq</op>

<value type="string">

<![CDATA[1224567]]>

</value>

</expression>

<expression p="y">

<parameter name="pDate">

<desc />

</parameter>

<table-name>ORDERS</table-name>

<column-name>SENT_DATE</column-name>

<op>eq</op>

<value type="dateTime" />

</expression>

</condition>

<outputfields>

<field>

<table-name>ORDERS</table-name>

<column-name>DEVICE_ID</column-name>

<alias />

</field>

<field>

<table-name>ORDERS</table-name>

<column-name>ORDER_NO</column-name>

<alias />

</field>

BrightIntegrator User‟s Manual Page 72 of 110

www.brightsoft.com.au Version 4.0.0

<field>

<table-name>ORDERS</table-name>

<column-name>LINE_COUNT</column-name>

<alias />

</field>

</outputfields>

<orderfields>

<field>

 <table-name>ORDERS</table-name>

 <column-name>ORDER_NO</column-name>

 <orderby>asc</orderby>

</field>

 </orderfields>

 <stored-procedure />

 <distinct-records>no</distinct-records>

 <online>no</online>

 <row-lock>no</row-lock>

 </query>

Attributes of “query”

Attribute Description Required

name Name of the query. Data sets refer to this name when using this query. Yes.

Query elements contain tables, relationships, condition, outputfields, and orderfields

elements.

Elements in “query”

Element Name Description Required

tables Specifies the tables within the query. Contains table

elements, each with a type attribute, which may be

“parent” or “child”. The content of the element is the

name of the table on the server.

Yes.

relationships Specifies relationships between tables. There must be

(n-1) relationships defined, where n is the number of

tables in the query. Contains relationship elements.

See below for details.

Yes, but only if

there are multiple

tables in the query

condition Specifies the query condition. An empty element

means no condition, therefore each record is returned.

Contains condition elements. See below for details

Yes, but may be

empty.

outputfields Specifies the output fields for the query. Contains

field elements.

No, if

BrightServer™ is

using the query,

otherwise Yes.

orderfields Specifies the order of appearance of the output fields.

Contains field elements.

No.

distinct-

records
Specifies if only distinct records are to be returned in

the resultset. If yes, does not return duplicate records.

No, defaults to

false/no.

BrightIntegrator User‟s Manual Page 73 of 110

www.brightsoft.com.au Version 4.0.0

online Specifies if the query is online or not. No, defaults to

false/no.

row-lock Specified if the records are to be row-locked when

accessed by BrightIntegrator.

No, defaults to

false/no.

Elements in “relationship”

Element Name Description Required

source

type=’parent’

multiplicity =

‘one’

The parent source for the relationship. Must have a

name attribute, which corresponds to the table

name. Contains one or more key elements.

Yes.

source type =

‘child’

multiplicity =

‘many’

The child source for the relationship. Must have a

name attribute, which corresponds to the table

name. Contains one or more key elements.

Yes.

Elements in “key”

Element Name Description Required

source

type=’parent’

multiplicity =

‘one’

The parent source for the relationship. Must have a

name attribute, which corresponds to the table

name. Contains one or more key elements,

containing one or more column elements. Each

column has an order attribute, and names a table

column.

Yes.

source type =

‘child’

multiplicity =

‘many’

Similar to the parent source, but for the child

source. Each column is matched between the

parent and child, to form the relationship.

Yes.

Condition elements must contain an expression element. Otherwise a condition will have a

comparison operator attribute, and multiple expressions. Possible comparison operators are

“AND” and “OR. The expressions are compared using the comparison operator. A

condition element may optionally contain another nested condition element.

Attributes of “expression”

Parameter Description Required

p Tells whether the expression element contains a

parameter or not. Possible values are “y” or “n”.

Yes.

BrightIntegrator User‟s Manual Page 74 of 110

www.brightsoft.com.au Version 4.0.0

Elements in “expression”

Element Name Description Required

table-name Names the table that contains the value Yes.

column-name Names the table column that contains the value Yes.

op Operator for the expression. Possible values are lt,

le, eq, ne, ge, gt, like.

Yes.

parameter Must contain a name attribute, and may contain an

optional desc (description) element.

Yes, but only if

this expression

contains a

parameter.

value Must have a type attribute. The content is the value

to be used in conjunction with the expression

operator.

Yes, but only if

this expression

does not contain a

parameter.

Elements in “field”

Element Name Description Required

table-name Names the table that contains the field Yes.

column-name Names the table column for the field Yes.

alias Optional alias for this field. Yes, but only if

this expression

contains a

function.

function This element contains the SQL aggregate functions

to be applied to the column. Supported values are

count, sum, avg, min, or max.

No.

orderby This element contains the distinct clause to be

applied for ordering the query. Allowed values are

yes and no.

No, but only used

for orderfields.

8.5.1 User Defined Queries

In order to support JavaScript based user defined sync points on the server, we need to be

able specify a special query type that we can use to send user defined payloads to the scripts

executed on the server side. In many cases standard queries (XML query) or advanced SQL

queries (basically a SQL SELECT statement) will be not adequate or will be restrictive in

terms of specifying what it is that the remote device is trying to read from the script.

To provide maximum flexibility we will introduce a new query type where the user can

define the format and the content of the query to be dispatched to server. This query data will

be referred as “payload”.

BrightIntegrator User‟s Manual Page 75 of 110

www.brightsoft.com.au Version 4.0.0

8.5.1.1 Query Spec XML Changes

<query name="MyQuery" version=”5”>

 <tables>...</tables>

 <is-user-query>yes</is-user-query>

 <user-query>

<payload name=”Payload”><![CDATA[my query data]]></payload>

 </user-query>

 <output-fields>…</output-fields>

</query>

is-user-query : Defines if the query is of a user query type or not.

user-query : This element contains the user query specific configuration elements.

payload : This defines the query payload together with the query parameter name.

output-fields : This is the existing element to contain the output fields from the parent table.

tables : This is the existing element to contain the name of the tables involved in the query.

BrightIntegrator User‟s Manual Page 76 of 110

www.brightsoft.com.au Version 4.0.0

8.6 Admin Element

BrightIntegrator configuration file allows you to configure system administration related

options such as configuring the details of an email account to which an email is to be sent

informing the sys admin of the result of a particular job execution. The following sections

outline the available option in the admin section defined by the admin element in the

configuration file.

<integrator version="2.0">

 <admin>

 <email-notification>

 <on-success>yes</on-success>

 <on-failure>yes</on-failure>

 <server>205.214.83.216</server>

 <port>25</port>

 <from>admin@mycompany.com.au</from>

 <to>admin@mycompany.com.au</to>

 <subject>BrightIntegrator job result</subject>

 <attach-file>c:/bi2/log/integrator.log</attach-file>

 </email-notification>

 </admin>

 <jobs version="2.0"> ... </jobs>

 <tasks version='2.0'> ... </tasks>

 <queries> ... </queries>

 <data-sets> ... </data-sets>

 <mappings version = "2.0"> ... </mappings>

</integrator>

Elements in “email-notification”

Element Name Description Required

on-success If set to “yes” an email message will be sent if the

job(s) are executed successfully (Valid values are

“yes” or “no”)

Yes

on-failure If set to “yes” an email message will be sent if

BrightIntegrator failed to execute job(s) (Valid

values are “yes” or “no”)

Yes

server Email server address Yes

port Email server port number. This is set to default Port

“25”. Does not need to be specified.

No

from Email address of the person who is sending the

email.

Yes

to Email address of the person to which the email is to

be sent.

Yes

subject Subject of the email Yes

attach-file Name of the file that can be sent with the email.

This is optional.

No

BrightIntegrator User‟s Manual Page 77 of 110

www.brightsoft.com.au Version 4.0.0

8.7 Push Module

The Push Module configuration file defines the push mechanism to be executed by

BrightIntegrator. This identifies the Publications, Subscriptions, Dispatchers, and Notifier

elements of the Push Module. This also states what escalation actions are to be executed if a

message fails to be sent etc.

The following is a sample Push Module configuration file. This file is referenced by the Push

data-set.
<push-task version="1.0" def-version="1">

 <publications>

 <publication name="OrderItems" set="OrderItem">

 <field>OID</field>

 </publication>

 </publications>

 <subscriptions>

 <subscription publication="OrderItems">

 <subscriber type="file" file="/bi3/data/oidmap.csv">

 <subscriber-values>

 <value name="OID" type="int">1</value>

 </subscriber-values>

 <dispatcher-values dispatcher="FileDispatcher">

 <value name="OrderItem.file-name" type="string">2</value>

 </dispatcher-values>

 </subscriber>

 </subscription>

 </subscriptions>

 <dispatchers>

 <dispatcher name="FileDispatcher" destination="PushFile">

 <attribs/>

 <escalations>

 <escalation execute="on-failure">

 <destination name="EscalationFile">

 <value name="OrderItem.file-name" type="string">C:\OnFail.txt</value>

 </destination>

 <condition/>

 <write-values/>

 </escalation>

 </escalations>

 </dispatcher>

 </dispatchers>

 <notifier>

 <attribs>

 <value name="max-retries" type="int">10</value>

 <value name="retry-interval" type="int">300</value>

 <value name="delete-failed-jobs" type="boolean">no</value>

 </attribs>

 <message-store type="database">

 <value name="url"

type="string">jdbc:microsoft:sqlserver://bohr:1433;DatabaseName=bstest;Sele

ctMethod=cursor</value>

 <value name="jdbc-driver"

type="string">com.microsoft.jdbc.sqlserver.SQLServerDriver</value>

 <value name="username" type="string">bstest</value>

 <value name="password" type="string">bstest</value>

 </message-store>

 </notifier>

</push-task>

BrightIntegrator User‟s Manual Page 78 of 110

www.brightsoft.com.au Version 4.0.0

Elements in “push-task”

Element Name Description Required

publications States the publications available to be used by the

subscribers. Consist of more than one <publication>

elements.

Yes

subscriptions List the subsciption elements which defines the

destination of the data to be sent via the dispatchers.

Yes

dispatchers Defines the attributes and escalation actions of the

dispatcher elements.

Yes

Notifier Describes the notifier attributes and message store

element.

Yes

The publications element consist of one or more publication elements.

 Elements in “publications”

Element Name Description Required

publication Yes

Attributes of “publication”

Element Name Description Required

name Defines the name of the publication which will be

used by the subscription element.

Yes

set Specifies the set used by the publication. This will

be the basis for the task data.

Yes

The publication element consist of one or more field elements. The field element references

the data from the set specified in the publication element. The publication will then filter the

set data based on the field element.

 Elements in “publication”

Element Name Description Required

field The field name to be used to filter the set data. Yes

The subscriptions element consist of one or more subscription elements.

 Elements in “subscriptions”

Element Name Description Required

subsciption Defines the published data to be used by the

subscription.

Yes

BrightIntegrator User‟s Manual Page 79 of 110

www.brightsoft.com.au Version 4.0.0

Attributes of “subscription”

Element Name Description Required

publication The name of the publication that is

referenced by the subscription.

Yes

default-dispatcher The name of the default dispatcher. No

The subscription element consist of one or more subscriber elements.

 Elements in “subscription”

Element Name Description Required

subsciber Defines the subcriber type. Can be based

from a file that contains the list of

subscriber details or based on a constant

value.

Yes

Attributes of “subscriber”

Element Name Description Required

type Type of the subscriber. Type can be a constant –

which is the actual data values. It can also be a file –

the values are indexing the file columns.

Yes

file The name of the subscriber file. Yes, if type is

file.

The subscriber element consist of one or more subscriber-values elements.

 Elements in “subscriber”

Element Name Description Required

subsciber-value Defines the value of the data to be passed

to the named fields in the referenced

publication.

Yes

dispatcher-values Defines the value of the attributes to be

passed to the dispatcher elements for each

subscriber.

Yes

Attributes of “dispatcher-values”

Element Name Description Required

dispatcher The name of the dispatcher to be

used by the subscriber.

Yes, if no default-dispatcher

defined in the subscription

element.

BrightIntegrator User‟s Manual Page 80 of 110

www.brightsoft.com.au Version 4.0.0

The subscriber-values element consist of one or more value elements which defines the data

to be passed to the publication.

The dispatcher-values element consist of one or more value elements which defines the

values to be passed to the attributes of the dispatcher. This is destination accessor specific.

For example, if you are using a File accessor as a destination, you can change the value of the

file-name for each subscriber. The following table details the dispatcher attributes that can be

overwritten.

Destination Attribute

File SetName.file-name , append

BrightForms server, port

BrightServer url, username, password

Email host, port, from, to, subject

The dispatchers element consist of one or more dispatcher elements.

 Elements in “dispatchers”

Element Name Description Required

dispatcher Defines the dispatcher name and destination Yes

The dispatchers element consist of one or more dispatcher elements.

 Elements in “dispatcher”

Element Name Description Required

attribs Defines the attribute values to be passed to the

dispatcher accessor.

No

escalations List the escalations to be executed when sending the

message to its destination

No

Attributes of “dispatcher”

Element Name Description Required

name The name of the dispatcher referenced by the

subscriber elements.

Yes

destination Name of the destination data-set. Yes

BrightIntegrator User‟s Manual Page 81 of 110

www.brightsoft.com.au Version 4.0.0

Elements in “escalations”

Element Name Description Required

escalation Defines the escalation actions to be executed when

sending the task data to the subscribers.

No

The escalations element consist of one or more escalation elements.

Elements in “escalation”

Element Name Description Required

destination The destination name to be used by the escalation

method.

Yes

condition The condition or conditions for the escalation

method.

No

write-values Values to overwrite the set data fields. Can be used

as a feedback mechanism to change a field

depending on the status of the message sent.

No

If a write-value is not defined with the escalation action the values from the task data will be

used for the write data. You can create a feedback mechanism within BrighIntegrator to

change the value of the status of a record. For example, change the status of a JOB record if it

was not sent successfully to the client devices.

Attributes of “escalation”

Element Name Description Required

execute Defines when the escalation method will be

executed. Possible values are: on-success, on-

failure and always.

Yes

The “on-failure” escalation action will be executed if and only if the message status was

failed. This means that a message is considered a failed message if the message was still

unsuccesfully sent after the configured retries.

The attribs, destination, condition and write-values elements consists of one or more value

element that defines the value to be passed to the mentioned elements. This element is

discussed at the end of this section.

The notifier element contains the attributes for the notifier and the message store. The

following are the attributes that you can change for the notifier element:

 <max-retries> - this is the maximum number that BrightIntegrator will retry sending

a failed message.

 <retry-interval> - this is the time the message will be put into the “Idle” state. When

the idle time elapses, BrightIntegrator will try resending the message

depending on the maximum number of retries.

 <delete-failed-jobs> - a flag to automatically delete the failed jobs record from the

message store.

BrightIntegrator User‟s Manual Page 82 of 110

www.brightsoft.com.au Version 4.0.0

The message store values are details of where the database of the message store is located,

the following are the values that need to be specified:

 url

 jdbc-driver

 username

 password

Elements in “notifier”

Element Name Description Required

attribs This defines the attributes of the notifier element

such as maximum retries and idle interval time.

No

message-store Describes the message store values used by the

notifier.

No

Attributes of “message-store”

Element Name Description Required

type Specifies the type of the message store. Type can

either be “database” or “memory”. By default

message-store will be created in memory.

No

Note: If using a “memory” message-store when the computer system restarts, the message

store will be reset.

The value element defines the name and type of the value to be passed to the following

elements:

 Attribs

 Message-store

 Subscriber-values

 Dispatcher-values

 Destination of the escalation element

 Condition of the escalation element

 Write-values

The “value” element

Element Name Description Required

value Defines the value name of the attribute. Yes

Attributes of “value”

Element Name Description Required

name Defines the name of the value to be used by the

elements of the push module.

Yes

type Specifies the data type. Yes

BrightIntegrator User‟s Manual Page 83 of 110

www.brightsoft.com.au Version 4.0.0

8.8 Scheduler Component

The <schedules> element defines the scheduler component of the job processor. The

scheduler can be based on a timer interval or a cron-trigger. See Appendix B for more details

on cron-triggers and cron-expressions.

<schedules>

 <schedule name ="SimpleSchedule" type="simple">

 <value name="interval" type="int">300</value>

 </schedule>

 <schedule name ="CronSchedule" type="cron">

 <value name="cron-expression" type="string">0 0/30 8-17 26,27 * ?</value>

 </schedule>

</schedules>

Elements in “schedules”

Element Name Description Required

schedule List the name of the scheduler components available

in the configuration file.

Yes

Attributes of “schedule”

Element Name Description Required

name The name of the scheduler component to be

executed.

Yes

type Defines the scheduler type. Can either be “simple”

or “cron”.

Yes

Elements in “schedule”

Element Name Description Required

value Defines the value name of the scheduler type. Yes

Attributes of “value”

Element Name Description Required

name Defines the name of the value of the scheduler

component. Can either be an “interval” or a “cron-

expression”.

Yes

type Specifies the type of the value to be passed to the

scheduler component. If using “interval” should

pass an integer type. If using “cron-expression”, the

type should be string.

Yes

BrightIntegrator User‟s Manual Page 84 of 110

www.brightsoft.com.au Version 4.0.0

8.9 Data Value Formatting

Formatting can be used in files for fields that represent Boolean, numerical or date values.

Booleans can be formatted in several ways. All formats are case-insensitive. Booleans are

recognised as “true” and “false”, “yes” and “no”, “0” and “1”. Alternatively, a customised

format may be specified in the form “true-identifier/false-identifier”.

8.9.1 Number Formatting

Numbers can be formatted using the following pattern symbols.

Symbol Location Localized? Meaning

0 Number Yes Digit

Number Yes Digit, zero shows as absent

. Number Yes Decimal separator or monetary decimal

separator

- Number Yes Minus sign

, Number Yes Grouping separator

E Number Yes Separates mantissa and exponent in scientific

notation. Need not be quoted in prefix or

suffix.

; Sub pattern

boundary

Yes Separates positive and negative sub patterns

% Prefix or suffix Yes Multiply by 100 and show as percentage

\u2030 Prefix or suffix Yes Multiply by 1000 and show as per mille

¤ (\u00A4) Prefix or suffix No Currency sign, replaced by currency symbol.

If doubled, replaced by international

currency symbol. If present in a pattern, the

monetary decimal separator is used instead

of the decimal separator.

' Prefix or suffix No Used to quote special characters in a prefix

or suffix, for example, "'#'#" formats 123

to "#123". To create a single quote itself, use

two in a row: "# o''clock".

For example, to specify leading zeroes to pad out an integer to four digits, the pattern would

be “0000”. Further, to specify exactly two decimal places, when given a double value, the

pattern would be “#.00”. To specify two decimal places at the most, the pattern would be

“#.##”.

BrightIntegrator User‟s Manual Page 85 of 110

www.brightsoft.com.au Version 4.0.0

More Examples

The following examples show how number patterns are interpreted for the given

number: -123.45.

Number Pattern Result

#.00 -123.45
00000.00 -00123.45

% -12345

8.9.1.1 Number Alignment

In addition, the pattern may be prefixed with an underscore. This will cause the number to

be right-aligned, within its field.

8.9.2 Date Formatting

Dates can be formatted using the following pattern symbols.

Letter
Date or Time

Component
Presentation Examples

G Era designator Text AD

y Year Year 1996; 96

M Month in year Month July; Jul; 07

w Week in year Number 27

W Week in month Number 2

D Day in year Number 189

d Day in month Number 10

F Day of week in month Number 2

E Day in week Text Tuesday; Tue

a Am/pm marker Text PM

H Hour in day (0-23) Number 0

k Hour in day (1-24) Number 24

K Hour in am/pm (0-11) Number 0

h Hour in am/pm (1-12) Number 12

m Minute in hour Number 30

s Second in minute Number 55

S Millisecond Number 978

z Time zone General time zone Pacific Standard Time; PST; GMT-
08:00

Z Time zone
RFC 822 time

zone
-0800

http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#text#text
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#year#year
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#month#month
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#number#number
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#number#number
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#number#number
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#number#number
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#number#number
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#text#text
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#text#text
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#number#number
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#number#number
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#number#number
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#number#number
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#number#number
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#number#number
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#number#number
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#timezone#timezone
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#rfc822timezone#rfc822timezone
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#rfc822timezone#rfc822timezone

BrightIntegrator User‟s Manual Page 86 of 110

www.brightsoft.com.au Version 4.0.0

For example, to specify a short date with four digit year, the pattern would be “dd-MM-

yyyy”. Further, to specify the 24 hour time, long date and four digit year, the pattern would

be “HH:mm:ss EEE d MMM yyyy”.

More Examples

The following examples show how date and time patterns are interpreted for the given

date and time: 2001-07-04 12:08.

Date and Time Pattern Result

h:mm 12:08
ddMMyy 040704

yyyyy.MMMMM.dd hh:mm 02004.July.04 12:08

8.10 Logging Configuration

BrightIntegrator™ uses the popular Log4J framework for logging runtime information to the

console, as well as to log files. The configuration file is log4j.xml, located in the conf

directory. The log file “integrator.log” is located in the log directory.

There are five levels of logging information. They are DEBUG, INFO, WARN, ERROR,

and FATAL. The DEBUG Level designates fine-grained informational events that are most

useful to debug an application. The INFO level designates informational messages that

highlight the progress of the application at coarse-grained level. The WARN level designates

potentially harmful situations. The ERROR level designates error events that might still

allow the application to continue running. The FATAL level designates very severe error

events that will presumably lead the application to abort.

In order to change the level of logging, the user must edit the log4j.xml configuration file.

Locate the “root” element, and in it, another element called “priority”. The “value”

attribute sets the global level for logging. By default, this is set to INFO.

Note: Log4J is configured to send logging information to the console, and to files in the log

directory. However, it applies a threshold on the console at the INFO level. This means that,

even if DEBUG is configured, no DEBUG information will appear on the console. DEBUG

information will appear in the log files as expected.

For more configuration information and examples see the Jakarta Log4j website:

http://jakarta.apache.org/log4j

BrightIntegrator User‟s Manual Page 87 of 110

www.brightsoft.com.au Version 4.0.0

8.11 Scripts

User defined JavaScripts are defined using the “scripts” element.

<scripts>

 <script name="TestScript" type="file">C:\temp\MyScript.js</script>

</scripts>

Attributes of “script”

Attribute Description Required

Name Name of the script Yes.

Type Type of script entry.

“file” if the script is kept in an external file. Set always to “file”. The

content of the <script> element contains the name of the physical file.

(Note: “embedded” if the script is embedded the configuration file.

This type is used only by BrightBuilder).

No

(default

“file”)

BrightIntegrator User‟s Manual Page 88 of 110

www.brightsoft.com.au Version 4.0.0

9.0 Last Run file

The Job Processor keeps track of the successful tasks executed in the Last Run file. This file

is named last-run.xml, and is by default located in the conf directory beneath where

BrightIntegrator™ is run. The Last Run file is also used to store task-related state data as

well.

Note that the location and name of the last run file can be set by using the [-l|--lastrun

LASTRUN_FILE_NAME] command line option when running BrightIntegrator.

If BrightIntegrator™ experiences an error during a job, the next time it runs, the job will be

resumed from the task that had not been successfully run. (This behaviour can be overridden

using the –n command line option) This is achieved by the Job Processor writing to the Last

Run file each time that a task was not completed. Once a job was run successfully, the Last

Run for that job will be cleared.

Important: Ensure that each job has a different name for each configuration.

The Last Run file is also used for storing timestamps that are used to reading data from a

BrightServer™ instance. Each time data is successfully read from BrightServer™, the

timestamp associated with the read, is stored in the Last Run file. Then when the next read

occurs, the timestamp in the Last Run file is retrieved and used as part of the read. In this

way, only incremental data is returned by the read.

An example of the XML layout for the Last Run file is given below.

<lastrun version="2.0">

<last-success>

<job name="ProduceDifferenceFile">0</job>

<job name="ExportBarCodes">0</job>

<job name="EnterNewOrders">0</job>

</last-success>

<data-sets>

<data-set name="ServerBarCodeTable">

<value name="time-stamp">1104822837289</value>

</data-set>

<data-set name="BrightServerDebtorTable">

<value name="time-stamp">0</value>

</data-set>

<data-set name="ServerTable1">

<value name="time-stamp">0</value>

</data-set>

</data-sets>

</lastrun>

BrightIntegrator User‟s Manual Page 89 of 110

www.brightsoft.com.au Version 4.0.0

10.0 How Do I ?

10.1 JDBC and BrightServer import difference task

How do I create a task to get the difference between a JDBC and BrightServer source and

save it back to BrightServer?

The task to generate the difference data set between the JDBC and BrightServer is shown

below:

 <task name="DiffImportBarCodes" >

 <source>ServerBarCodeTable</source>

 <old-source>BSBarcodeTable</old-source>

 <destination>BSBarcodeTable</destination>

 <description>

 <![CDATA[Calculate the difference, and save to BrightServer]]>

 </description>

 </task>

The “ServerBarCodeTable” is defined as a JDBC data set and the BSBarcodeTable is defined

as a BrightServer data set in the data-sets elements of the configuration file.

10.2 Exporting joined tables

How do I export customer and customer orders from BrightServer in one task but using two

destination files?

Define the query with joined tables and simply specify the parent and child tables, and the

relationships. See example below for CUST and CUST_ORDERS tables:

 <queries>

 <query name="CustCOrdersQuery">

 <tables>

 <table type="parent">CUST</table>

 <table type="child">CUST_ORDERS</table>

 </tables>

 <relationships>

 <relationship>

 <source name="CUST" type="parent" multiplicity="one">

 <key>

 <column order="1">CUST_NO</column>

 <column order="2">DEL_CODE</column>

 </key>

 </source>

 <source name="CUST_ORDERS" type="child"

multiplicity="many">

 <key>

 <column order="1">CUST_NO</column>

 <column order="2">DEL_CODE</column>

 </key>

 </source>

 </relationship>

 </relationships>

 <condition />

BrightIntegrator User‟s Manual Page 90 of 110

www.brightsoft.com.au Version 4.0.0

 <outputfields/>

 <orderfields/>

 <distinct-records>no</distinct-records>

 <online>no</online>

 <row-lock>no</row-lock>

 </query>

 </queries>

Then define the output files data-set as follows:

 <data-set name="OutFiles" type="File" >

 <sets>

 <set name="Cust">

 <file-name>c:/bi2/data/CUST.TXT</file-name>

 <mapping>CustCSVMapping</mapping>

 </set>

 <set name="CustOrders">

 <file-name>c:/bi2/data/CUST_ORDERS.TXT</file-name>

 <mapping>CustOrdersCSVMapping</mapping>

 </set>

 </sets>

 </data-set>

BrightIntegrator User‟s Manual Page 91 of 110

www.brightsoft.com.au Version 4.0.0

Appendix A – API (Pronto, Web Service) Configuration File

A1.0 Introduction

The API style data-set types (Pronto and Web Services) have their own dedicated XML

configuration file. This file configures specific API calls to be made when data is received

by the data-set. In simple terms this XML configuration file describes how the data needs to

be processed by the external API provider. In the Pronto case, this is the Pronto Integration

Engine (PIE), and in the Web Services case, this is the web server.

Both Pronto and Web Services data sets have in common the API module, which can handle

consuming group data and submits it to the API server. Hence they also share the API

configuration file.

The API configuration file defines which API to call together with the parameter details. The

source of API parameters could be constant values (type constant), values from the sets read

by BrightIntegrator from other sources (type bi), or the results of the API calls (type api). The

result parameters of each API call is cached by BrightIntegrator for subsequent API calls;

however, BrightIntegrator will initially remove all the result parameters that the API call is

supposed to return, thereby guaranteeing the correctness of the result parameter values that

the subsequent API call rely on.

The document root element is api-task (also pronto-task is accepted for backwards

compatibility). The top-level elements of the XML file are pre-task, group, post-task, and

apis. An example of the each top-level element will be explained in the following sections.

API calls can be configured to be made at the following times:

 Before the task begins (pre-task)

 Before each data group (pre-group)

 For each record in a data group (group / set)

 After each data group (post-group)

 After the task ends (post-task)

BrightIntegrator User‟s Manual Page 92 of 110

www.brightsoft.com.au Version 4.0.0

A1.1 “pre-task” element

This optional element defines an API call to be made before the task begins. This is useful

for initialisation purposes such as logging, creating connections or setting a state for the

upcoming task. The value given for the api attribute should be defined in the apis element.

The following example could be used to login before processing the group data,

 <pre-task api="login"/>

Attributes of “pre-task”

Attribute Description Required

api The API method to be called before the task begins.

The given value should refer to a corresponding entry

in the apis element.

Yes

Important: The parameters of the pre-task API call should not reference bi value types as

they are not available in this scope.

A1.2 “group” element

The group element forms the central part of the configuration file. A data group is a

collection of records. Each record is associated to the group by pre-defined relationships.

See section 2.3 Grouping Data for more details about grouping. An example of a data group

would be a sales order, containing a single ORDER_HEADER record, along with multiple

ORDER_ITEM records. The ORDER_HEADER record is said to be in the main set, and the

ORDER_ITEM records would be members of a second set, in the group.

The core of the group element is the sets element, which defines an API call for each

different set. So for the ORDER_HEADER main set, we might make the API call

“createOrder”, and for the ORDER_ITEM second set, we might make the call “createLine”.

And then the group element would be,

<group>

 <sets>

 <set name="OrderHeader" api="createOrder"/>

 <set name="OrderItem" api="createLine"/>

 </sets>

</group>

The API calls are made in the order of appearance of the set elements.

Optional elements are pre-group and post-group. These elements declare apis that can be

called before and after each group. To extend the above example, we may choose to use the

pre-group element to log onto the server and then post-group element to submit the order so

that we can complete the order for the group. Then the XML would become,

<group>

 <pre-group api="login"/>

 <sets>

 <set name="OrderHeader" api="createOrder"/>

BrightIntegrator User‟s Manual Page 93 of 110

www.brightsoft.com.au Version 4.0.0

 <set name="OrderItem" api="createLine"/>

 </sets>

 <post-group api=”submitOrder”/>

</group>

Note that pre-group and post group APIs will have access to the header record in the first set

(main set) defined. In the above example that would be the order header record.

Also note that if a specified bi value does not exist in the set being submitted, then

BrightIntegrator will search the value in the header record. By doing that, the user would not

need to duplicate fields already in the header (main set) for the child sets.

Attributes of “group”

Attributes Description Required

resend-failed Defines if the failed group has to be resent back to

the server or not. If set to “false”, the failed groups

will not be resent. If the attribute is not set, then the

failed groups will be sent to the server. Default

behaviour is to resend all failed groups.

No.

Elements in “group”

Element Name Description Required

pre-group The API method to be called before the group is

processed. The value given for the api attribute

should be defined in the apis element.

No.

sets Defines which API to be called for each set in the

group. It contains one or more set elements.

Yes.

post-group The API method to be called after the group is

processed. The value given for the api attribute

should be defined in the apis element.

No.

Attributes of “set”

Attributes Description Required

name The name of the set. This name references the set

name that was given in the original source data-set

from where the data was read.

Yes.

api The API method to be called for each record in the

set. The value given for the api attribute should be

defined in the apis element.

Yes.

BrightIntegrator User‟s Manual Page 94 of 110

www.brightsoft.com.au Version 4.0.0

A1.3 “post-task” element

This optional element defines an API call to be made after the task ends. This is useful for

tearing down connections or restoring the state after the task. The value given for the api

attribute should be defined in the apis element. The following example could be used to

login before processing the group data,

 <post-task api="logoff"/>

Attributes of “post-task”

Attribute Description Required

api The API method to be called after the task ends. The

given value should refer to a corresponding entry in

the apis element.

Yes

A1.4 “apis” element

The apis element defines the API calls that are declared in the other elements. The apis

element contains one or more api elements.

Each api element has a name attribute, which is used as its reference throughout this file.

The external-name element (pronto-name is also accepted for backwards compatibility)

defines the actual API method name as the server knows it. If an error is returned from the

server, then there is an optional on-error attribute which can be used to make another API

call. Any errors that occur from on-error calls are ignored, so that the potential for infinite

loops is avoided.

The api element can also optionally write return fields to a csv file as a form of feedback

mechanism from the connection.

<api name="createOrder" on-error="">

 <on-error>

 <!—on-error details -->

 </on-error>

<external-name>create-so</external-name>

<params>

<!—params details -->

</params>

<results>

<!—results details -->

</results>

<file-feedbacks>

<!—file-feedbacks details -->

</file-feedbacks>

</api>

BrightIntegrator User‟s Manual Page 95 of 110

www.brightsoft.com.au Version 4.0.0

There is also an optional on-error element that allows BrightIntegrator to define multiple on-

error API calls. It has the following format:

<on-error>

 <api>CancelOrder</api>

 <api>SendEmail</api>

</on-error>

If there is a single on-error API that needs to be called, the “on-error” attribute can be used.

On the other hand, you do not need to use the “on-error” attribute, since the on-error element

can also be used to define a single on-error API. If both on-errors are used, BrightIntegrator

will call the on-error API specified by the “on-error” attribute and all the on-error APIs

defined by the on-error element. As an example,

<api name="createOrder" on-error="CancelOrder">

 <on-error>

 <api>SendEmail</api>

 </on-error>

 …

</api>

is equal to:

<api name="createOrder" on-error="">

 <on-error>

 <api>CancelOrder</api>

 <api>SendEmail</api>

 </on-error>

 …

</api>

Attributes of “api”

Attributes Description Required

name The name of the api. This name references this api

throughout the rest of the file.

Yes

on-error The API method to be called if an error occurs

during the call of this api.

No

Elements in “api”

Element Name Description Required

on-error Allows multiple on-error API names to be defined. No

external-name The actual API method name according to the

server.

Yes

params Defines the input parameters to give to the API call. No

results Defines the output results from the API call. No

BrightIntegrator User‟s Manual Page 96 of 110

www.brightsoft.com.au Version 4.0.0

The params element contains one or more param elements. Each param element

corresponds to an input parameter for the API call. An input parameter must be one of three

types, constant – an explicitly defined fixed value, bi – a value taken from a named field in

the input set data, or api – a value taken from a named result of a previous API call.

<params>

<param name="lp-auth-user-number">

<src-type>api</src-type>

<src-name>lr-user-number</src-name>

</param>

<param name="lp-auth-accountcode">

<src-type>constant</src-type>

<value>123456</value>

</param>

</params>

Attributes of “param”

Attributes Description Required

name The name of the input parameter, according to the

API call.

Yes.

Elements in “param”

Element Name Description Required

src-type Valid values are: constant, api, bi, systemtime, set,

taskdata

If the src-type is systemtime, BrightIntegrator will

provide the current system date-time at the time of

API call.

If the src-type is set or taskdata, BrightIntegrator

will provide the XML string in the Bright XML

format, for either just the set or the whole taskdata,

respectively. See Appendix F for details.

Yes.

src-name If src-type is bi: then src-name is the name of a

field in the input data set.

If src-type is api: then src-name is the name of a

result from a previous API call.

Only if src-type is

api or bi.

format The format of the field. See section 8.9 Data Value

Formatting

No

value A fixed value. Only if src-type is

constant.

The results element contains one or more result elements. One result element is required to

be defined for each output that we wish to inspect the value of. Each result element contains

one or more case elements, which specify value comparisons. The result value is compared

with each case down the list until the first match is found. Then the instructions attached to

BrightIntegrator User‟s Manual Page 97 of 110

www.brightsoft.com.au Version 4.0.0

the matching case are followed. A case may specify that the on-error API call is to be made.

Following this the case command is carried out.

Possible case commands are:

"abort-task": The current task is aborted and any further processing is cancelled.

"exit-task": The current task processing is cancelled, but any post-processing is still carried

out.

"abort-group": The current group processing is aborted, and its post-processing is cancelled,

and the next group will be processed.

"exit-group": The current group processing is cancelled, but its post-processing is still

carried out, and the next group will be processed.

"continue": Processing continues uninterrupted, but the on-error action is invoked. This

command is used as a placeholder if we just want the on-error action to occur.

"repeat": Processing continues uninterrupted, and the current API call will be invoked again.

This is used for API calls which can return data iteratively.

Possible case operators are:

Operator Meaning

eq equal to

ne not equal to

lt less than

le less than or equal to

gt greater than

ge greater than or equal to

For instance, say the result value returned from the API call is -1. Then a case with

operator=”eq” and code=”0” will not match, because -1 is not equal to 0. A case with

operator=”lt” and code=”0” will match, because -1 is less than 0.

<results>

<result name="lr-result-status" type="int">

<case command="abort-task" run-on-error="no">

<operator>ne</operator>

<code>0</code>

</case>

</result>

</results>

Attributes of “result”

Attributes Description Required

name The name of the output result, according to the API. Yes.

type The data type of the result. Internal data types are

accepted.

Yes.

The result element contains one or more case elements.

BrightIntegrator User‟s Manual Page 98 of 110

www.brightsoft.com.au Version 4.0.0

Attributes of “case”

Attributes Description Required

run-on-error Set to “yes” or “true” if the on-error api is to be

called in the case matches. This will occur before

command.

No.

command The command to be carried out if the case matches.

Possible values are: abort-task, exit-task, abort-

group, exit-group, continue

Yes.

Elements in “case”

Element Name Description Required

operator The comparison operator. Possible values are: eq,

lt, le, gt, ge, ne.

Yes.

code A fixed value to be used as a part of the

comparison.

No.

The file-feedbacks element is an optional element that allows BrightIntegrator to write the

return output from Pronto to multiple feedback files per API call. The file-feedbacks element

contains one or more file-feedback elements. One file-feedback element is required to be

defined for each output file.

<file-feedbacks>

<file-feedback name="c:\bi2\Feedback.txt" type="csv" append="no">

<file-field>

<src-type>bi</src-type>

<src-name>OID</src-name>

</file-field>

<file-field>

<src-type>api</src-type>

<src-name>lr-sales-order-number</src-name>

</file-field>

<file-field>

<src-type>constant</src-type>

<value>hello</value>

</file-field>

<file-field>

<src-type>bi</src-type>

<src-name>dtOrdered</src-name>

<format>dd-MM-yyyy</format>

</file-field>

</file-feedback>

</file-feedbacks>

Elements in “file-feedbacks”

Element Name Description Required

file-feedback Defines the output file. Yes

BrightIntegrator User‟s Manual Page 99 of 110

www.brightsoft.com.au Version 4.0.0

Attributes of “file-feedback”

Attributes Description Required

name The name of the output file. Yes

type The file type should always be a comma-separated

file type.

Yes

append If set to yes, then when writing to this data-set,

information will be appended, if the file already

exists. Otherwise the file will be rewritten from the

beginning.

No; defaults to

“yes”

on-success If set to yes, when the api is executed successfully,

the feedback-file will be written on. Otherwise the

feedback-file write operation will be ignored. If this

attribute does not exist in the configuration file,

BrightIntegrator will still write to the feedback-file

on api success.

No; defaults to

“yes”

on-failure If set to yes, when the api fails the feedback-file will

be written on; otherwise the feedback-file write

operation will be ignored. If this attribute does not

exist in the configuration file, BrightIntegrator will

still write to the feedback-file on api failure.

No; defaults to

“yes”

The file-feedback element contains one or more file-field elements. One file-field element is

required to be defined for each return output that is required to write to the output file.

Elements in “file-field”

Element Name Description Required

src-type Valid values are: constant, api, bi, systemtime

If the src-type is systemtime, BrightIntegrator will

return the current system date-time at the time of

writing the file field value to the feedback file.

Yes.

src-name If src-type is bi: then src-name is the name of a

field in the input data set.

If src-type is api: then src-name is the name of a

result from a previous API call.

Only if src-type

is api or bi.

format The format of the field. See section 8.9 Data Value

Formatting

No

value A user defined value to be written to the file instead

of the null value returned by the output result

source.

Only if src-type

is constant.

BrightIntegrator User‟s Manual Page 100 of 110

www.brightsoft.com.au Version 4.0.0

Appendix B – Cron Expressions
This section explains what Cron and Cron expressions are. There is also a list of examples

that can be used within your scheduler component.

B1.0 Cron Definition

Cron is the name of program that enables unix users to execute commands or scripts (groups

of commands) automatically at a specified time/date. This allows users to create a

CronTrigger that can fire a job schedule that recurs based on calendar-like notations such as

“At 2:00 pm every last Friday of the month” or “Every 8:00am and 9:00am every Monday to

Friday, rather than specified intervals.

B1.1 Cron Expressions

A cron expression is a string comprised of 6 or 7 fields separated by white space which

defines your CronTrigger and describes individual details of the schedule. The 6 mandatory

and 1 optional fields are as follows:

Field Name Allowed Values Allowed Special Characters

Seconds 0-59 , - * /

Minutes 0-59 , - * /

Hours 0-23 , - * /

Day-of-month 1-31 , - * ? / L W C

Month 1-12 or JAN_DEC , - * /

Day-of-week 1-7 or SUN-SAT , - * ? / L C #

Year (Optional) Empty, 1970-2099 , - * /

Special Character Definition:

Special

Character

Description

* (Asterisk)

Specifies all values. For example, “*” in the minute field means every minute.

? (Question mark)

This is used to specify “no specific value” in the day-of-month and day-of-week

fields. This is useful when you need to specify something in one of the two

fields but not the other.

- (Dash)

Defines a range. For example, “10-12” in the hour field means “the hours 10,11

and 12”.

, (Comma)

Used to specify additional values. For examples, "MON,WED,FRI" in the day-

of-week field means "the days Monday, Wednesday, and Friday".

/ (Forward slash)

Used to specify increments. For example "0/15" in the seconds field means "the

seconds 0, 15, 30, and 45". And "5/15" in the seconds field means "the seconds

5, 20, 35, and 50". You can also specify '/' after the '*' character - in this case '*'

BrightIntegrator User‟s Manual Page 101 of 110

www.brightsoft.com.au Version 4.0.0

is equivalent to having '0' before the '/'.

L This character is short-hand for "last" and is only allowed for the day-of-month

and day-of-week fields. For example, the value "L" in the day-of-month field

means "the last day of the month" - day 31 for January, day 28 for February on

non-leap years. If used in the day-of-week field by itself, it simply means "7" or

"SAT". But if used in the day-of-week field after another value, it means "the

last xxx day of the month" - for example "6L" means "the last friday of the

month". When using the 'L' option, it is important not to specify lists, or ranges

of values, as you'll get confusing results.

W This character is used to specify the weekday (Monday-Friday) nearest the

given day. It is only allowed for the day-of-month field. For example, if you

were to specify "15W" as the value for the day-of-month field, the meaning is:

"the nearest weekday to the 15th of the month". So if the 15th is a Saturday, the

trigger will fire on Friday the 14th. If the 15th is a Sunday, the trigger will fire

on Monday the 16th. If the 15th is a Tuesday, then it will fire on Tuesday the

15th. However if you specify "1W" as the value for day-of-month, and the 1st is

a Saturday, the trigger will fire on Monday the 3rd, as it will not 'jump' over the

boundary of a month's days. The 'W' character can only be specified when the

day-of-month is a single day, not a range or list of days.

LW Translates to “last weekday of the month”. This combination can be used for the

ay-of-month field.

C This character is short-hand for "calendar" and is only allowed for the day-of-

month and day-of-week fields. This means values are calculated against the

associated calendar, if any. If no calendar is associated, then it is equivalent to

having an all-inclusive calendar. A value of "5C" in the day-of-month field

means "the first day included by the calendar on or after the 5th". A value of

"1C" in the day-of-week field means "the first day included by the calendar on

or after sunday".

This character is used to specify "the nth" XXX day of the month and is only

allowed for the day-of-week field. For example, the value of "6#3" in the day-

of-week field means the third Friday of the month (day 6 = Friday and "#3" =

the 3rd one in the month). Other examples: "2#1" = the first Monday of the

month and "4#5" = the fifth Wednesday of the month. Note that if you specify

"#5" and there is not 5 of the given day-of-week in the month, then no firing

will occur that month.

NOTE: The legal characters and the names of months and days of the week are not case

sensitive.

Here are some examples:

Expression Meaning

"0 0 12 * * ?" Fire at 12pm (noon) every day

"0 15 10 ? * *" Fire at 10:15am every day

"0 15 10 * * ?" Fire at 10:15am every day

"0 15 10 * * ? *" Fire at 10:15am every day

"0 15 10 * * ? 2005" Fire at 10:15am every day during the year 2005

"0 * 14 * * ?" Fire every minute starting at 2pm and ending at 2:59pm,

every day

BrightIntegrator User‟s Manual Page 102 of 110

www.brightsoft.com.au Version 4.0.0

"0 0/5 14 * * ?" Fire every 5 minutes starting at 2pm and ending at 2:55pm,

every day

"0 0/5 14,18 * * ?" Fire every 5 minutes starting at 2pm and ending at 2:55pm,

AND fire every 5 minutes starting at 6pm and ending at

6:55pm, every day

"0 0-5 14 * * ?" Fire every minute starting at 2pm and ending at 2:05pm,

every day

"0 10,44 14 ? 3 WED" Fire at 2:10pm and at 2:44pm every Wednesday in the month

of March.

"0 15 10 ? * MON-FRI" Fire at 10:15am every Monday, Tuesday, Wednesday,

Thursday and Friday

"0 15 10 15 * ?" Fire at 10:15am on the 15th day of every month

"0 15 10 L * ?" Fire at 10:15am on the last day of every month

"0 15 10 ? * 6L" Fire at 10:15am on the last Friday of every month

"0 15 10 ? * 6L" Fire at 10:15am on the last Friday of every month

"0 15 10 ? * 6L 2002-2005" Fire at 10:15am on every last friday of every month during

the years 2002, 2003, 2004 and 2005

"0 15 10 ? * 6#3" Fire at 10:15am on the third Friday of every month

"0 0/5 * * * ?" Fires every 5 minutes

"10 0/5 * * * ?" Fires every 5 minutes, at 10 seconds after the minute (i.e.

10:00:10 am, 10:05:10 am, etc.).

"0 30 10-13 ? * WED,FRI" Fires at 10:30, 11:30, 12:30, and 13:30, on every Wednesday

and Friday.

"0 0/30 8-9 5,20 * ?" Fires every half hour between the hours of 8 am and 10 am

on the 5th and 20th of every month. Note that the trigger will

NOT fire at 10:00 am, just at 8:00, 8:30, 9:00 and 9:30.

Some scheduling requirements are too complicated to express with a single trigger - such as

"every 5 minutes between 9:00 am and 10:00 am, and every 20 minutes between 1:00 pm and

10:00 pm". The solution in this scenario is to simply create two triggers, and register both of

them to run the same job.

References:

http://quartz.sourceforge.net/javadoc/org/quartz/CronTrigger.html

http://www.opensymphony.com/quartz/wikidocs/TutorialLesson6.html

http://quartz.sourceforge.net/javadoc/org/quartz/CronTrigger.html
http://www.opensymphony.com/quartz/wikidocs/TutorialLesson6.html

BrightIntegrator User‟s Manual Page 103 of 110

www.brightsoft.com.au Version 4.0.0

Appendix C – Running BrightIntegrator as a Windows
Service

The “service” sub directory contains all the necessary files for installing BrightIntegrator as a

Windows service.

Important to note that BrightIntegrator can only be installed and run as a Windows Service if

it has configured schedules to run continuously otherwise it will run the jobs configured once

and exit.

When running as a service, BrightIntegrator needs to point to a BrightIntegrator XML

configuration file. This is configured in the "wrapper.conf" file located in the “service” sub

directory where the BrightIntegrator is installed.

By default it refers to the BrightIntegrator configuration file "config.xml" located in the

"conf" directory (i.e. ..\conf\config.xml).

If you are using a configuration file with the same name in the same location, then you do not

need to change the "wrapper.conf" file, and you can skip this step.

If you are using a configuration file that has a different name and/or is located somewhere

else, then go to Line 54 of the "wrapper.conf" file and edit the following line.

wrapper.app.parameter.2=-c ..\conf\config.xml

You can change this line as required. For instance to :

wrapper.app.parameter.2=-c ..\new_location\myconfigfile.xml

NOTE: When BrightIntegrator is installed by the InstallShield based setup program, then a

Windows Service named “BrightIntegrator” will also be installed by the setup program. The

status of the BrightIntegrator service installed is manual. After configuring wrapper.conf file

as described above, go to Services in the Windows Control Panel, and set the status to

“Automatic” and start the BrightIntegrator service to run BrightIngerator.

In order to install the BrightIntegrator service manually, follow the following instructions.

To install BrightIntegrator as a Windows service, run

InstallBI3Service.bat

To remove BrightIntegrator as a Windows service, run

UninstallBI3Service.bat

BrightIntegrator User‟s Manual Page 104 of 110

www.brightsoft.com.au Version 4.0.0

Troubleshooting

To run BrightServer, you must configure necessary schedules for the jobs in question.

Otherwise BrightIntegrator will run once and exit the service.

If you have problems when trying to start BrightIntegrator as a Windows service, you can use

RunBI3.bat to run BrightIntegrator in a command line interface and check the errors and fix

the configuration issues that is preventing BrightIntegrator from running as a service.

You can also check out the "wrapper.log" file in the log directory (..\log).

BrightIntegrator User‟s Manual Page 105 of 110

www.brightsoft.com.au Version 4.0.0

Appendix D – How to connect BrightServer via a secure
connection using “truststore”

In order to connect to BrightServer via a secure https port, the file shipped in the root

BrightIntegrator directory must be copied to the home directory of the user running

BrightIntegrator. The name of the file is “truststore” and it contains the necessary digital

certificates signed by Bright Software in order to communicate with BrightServer via the

dedicated https port. This port is by default configured to be on port 8443.

For example, on Windows platform, if the account name of the user who is running

BrightIntegrator is jsmith, then the file truststore needs to be copied “C:\Documents and

Settings\jsmith”.

Important to note that if BrightIntegrator is configured to be running as a Windows service,

then the file truststore must be copied to the home directory of the user account which is

configured to run BrightIntegrator as the service. This can be configured via the „Log On‟ tab

of the BrightIntegrator service entry created.

BrightIntegrator User‟s Manual Page 106 of 110

www.brightsoft.com.au Version 4.0.0

Appendix E – Formatting Objects

When an XML File Data Set is configured to apply an XSL transform, it is possible to also

configure BrightIntegrator to interpret the XSL output as a Formatting Object tree. In this

case, BrightIntegrator is able to render the resulting pages in a specified format, to the File

Data Set filename.

Output formats currently supported include PDF, PCL, PS, SVG, MIF, TXT, and printing

directly to the default printer.

BrightIntegrator internally uses Apache FOP (Formatting Objects Processor)., which is a

partial implementation of the XSL-FO Version 1.0 W3C Recommendation.

Support for each of the XSL-FO standard objects and properties are detailed in FOP

Compliance on the Apache site, http://xmlgraphics.apache.org/fop/compliance.html.

http://xmlgraphics.apache.org/fop/compliance.html

BrightIntegrator User‟s Manual Page 107 of 110

www.brightsoft.com.au Version 4.0.0

Appendix F – TaskData XML Object

The following XML format is used to represent a TaskData data object.

 <data>

 <table name="myTable">

 <columns>

 <col type="string">Name</col>

 <col type="string">Address</col>

 <col type="int">Age</col>

 <col type="dateTime">dt_birth</col>

 <col type="float">salary</col>

 <col type="double">target</col>

 <col type="boolean">IsManager</col>

 </columns>

 <records>

 <record>

 <item>John</item>

 <item>Sydney 2000</item>

 <item>20</item>

 <item>1984-12-11T11:20:00.000Z</item>

 <item>20000.0</item>

 <item>220000.0</item>

 <item nil="true"/>

 </record>

 <record>

 <item>Helga</item>

 <item nil="true"/>

 <item>18</item>

 <item>1986-01-01T11:20:00.000Z</item>

 <item>18000.3</item>

 <item>220000.0</item>

 <item>false</item>

 </record>

 </records>

 </table>

 <table name=...>

 ...

 </table>

 <table name=...>

 ...

 </table>

 ...

 </data>

BrightIntegrator User‟s Manual Page 108 of 110

www.brightsoft.com.au Version 4.0.0

Appendix G – Transformation Field Functions

The following table contains the available functions that can be used in the transformation

field mappings.

Function Description/Syntax

If Description: Evaluates a conditional expression, and returns one of

two possible values.

Syntax: If, v1, op, v2, true-value, false-value

where v1: Value to be used in the conditional expression

 op: Comparison operator for the conditional expression

 v2: Value to be used in the conditional expression

 true-value: Returns this value if the condition is true

 false-value: Returns this value if the condition is false

NOTE: The comparison operator must be one of the following:

 “lt”: less than.

 “le”: less than or equal to.

 “eq”: equal to.

 “ne”: not equal to.

 “ge”: greater than or equal to.

 “gt”: greater than.

Example:

If,BVFIELD1BV,eq,"str",”they_match","NO_MATCH"
If the value for FIELD1 in this record is equal to “str” then return

the value “they match”, otherwise return the value “NO_MATCH”.

Example:

If, BVFIELD_DOUBLEBV, lt, 333.0, 0.0, 1.1
If the value for FIELD_DOUBLE in this record is less than 333.0

then return the value 0.0, otherwise return the value 1.1.

Replace Description: Replaces all occurrences of one string with another in

the field.

Syntax: Replace,s1, s2

where s1 : String to be searched

 s1 : New string to replace all occurrences of s1

Example:

Replace,”abc”,”xxx”

If the field value were “abcdefabc”, after the execution of the

function, the field value would contain “xxxdefxxx”

ReplaceChar Description: Replaces all occurrences of a character in the field

with the string specified

Syntax: ReplaceChar,ddd, str

where ddd : Decimal value of the code of the Unicode character to

be

 searched

 str : New string to replace all occurrences of the character

Example:

BrightIntegrator User‟s Manual Page 109 of 110

www.brightsoft.com.au Version 4.0.0

Replace,176,”DegreeC”

If the field value were “37 °”, after the execution of the function, the

field value would contain “37 DegreeC”

IMPORTANT NOTE : The character code must be the Unicode

character‟s decimal value. Please use a Unicode Character Map to

find the decimal value that needs to be used.

ReplaceNonPrintable Description: Replaces all occurrences of non-printable characters in

the field with the character specified.

Syntax: ReplaceNonPrintable, str

where str : Replacement character to be used to replace all non-

printable characters. (Note: that the replacement character is still

specified as a String, however only the first character will be used)

Example:

ReplaceNonPrintable,”?”

If the field value contains non-printable characters such as

“0x0002Normal0x0000Text0x008A”, after the execution of the

function, the field value would contain “?Normal?Text?”.

NOTE: The precise algorithm is to be replace all ASCII characters

less than 32, and all ASCII characters greater than 126, with the

exceptions of 0x0009 (tab), 0x000A (LF) and 0x000D (CR).

Remove Description: Removes all occurrences of a string from the field.

Syntax : Remove,str

where str : Substring to be searched and removed

Example:

Remove,”$”

If the field value were “abcdef$”, after the execution of the function, the

field value would contain “abcdef”

RemoveChar Description: Removes all occurrences of a character from the field.

Syntax : RemoveChar,ddd

where ddd : Decimal value of the code of the Unicode character to be

 removed from the field value

Example:

RemoveChar,176

If the field value were “37°”, after the execution of the function, the field

value would contain “37”

See the note above regarding the Unicode character value.

ToUpper Description: Converts all the characters in the field to uppercase

Syntax: ToUpper

Example:

ToUpper

If the field value were “hello world”, after the execution of the function,

the field value would contain “HELLO WORLD”

ToLower Description: Converts all the characters in the field to lowercase

Syntax: ToLower

BrightIntegrator User‟s Manual Page 110 of 110

www.brightsoft.com.au Version 4.0.0

Example:

ToLower

If the field value were “HELLO WORLD”, after the execution of the

function, the field value would contain “hello world”

Mid Description: Extracts the number of characters specified starting from the

location requested

Syntax: Mid,start,count

where start : Starting position

 count : Number of characters to be extracted

Example:

Mid,5,3

If the field value were “0123456789”, after the execution of the function,

the field value would contain “567”

Left Description: Extracts the first (leftmost) number of characters specified

from the field

Syntax: Left,count

where count : Number of characters to be extracted

Example:

Left,3

If the field value were “0123456789”, after the execution of the function,

the field value would contain “012”

Right Description: Extracts the last (rightmost) number of characters specified

from the field

Syntax: Left,count

where count : Number of characters to be extracted

Example:

Right,3

If the field value were “0123456789”, after the execution of the function,

the field value would contain “789”

