v

hrlghtsuftware

Brightintegrator™

User's Manual
Version 4.0.0

March 2010

Copyright © 2002-2010 Bright Software Pty. Ltd.
All rights reserved

Due to continued product development this information may change without notice. The information
and intellectual property contained herein remains the exclusive property of Bright Software Pty. Ltd.
If you find any problems in the documentation, please report them to us in writing. Bright Software
Pty. Ltd. does not warrant that this document is error-free.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior

written permission of Bright Software Pty. Ltd.

Tables of Contents

BrightINte@ratorT™..........oiiiiiiiiiie et 1
1.0 Terms and ADDIEVIALIONScuiiiiiiie et 4
RO] T (1 o4 A o] o 1SS RPRP TSRS 5
1.1 THE JOD PIOCESSON ...ttt bbbttt bbbt 5
1.2 PUSR IMIOQUIE ...ttt sttt b be e nre s 6
2.0 JODS AN TASKS ...ttt sttt bbbttt b e bt bbb b e e 7
2.1 TraNSACTION SUPPOITeiieiieeiteite ettt bbbttt nes 8
2.1 1 AULO-COMMIT ...ttt bbbttt bbbt 9
2.1.2 Auto-Commit and BrightServer™............cccciiiiiiiiiieiicie s 9
2.2 Calculating the DIFfErENCEcc.veee et 9
2.3 GrOUPING DALA.cviiieiiieiieieie et b bt 10
2.3.1 Group DefINITIONcceeiiiie e 10
2.4 TransTOrmMING DAtA.........coeiiiiiiiiiei s 12
3.0 DALA SEIS ...t E e b e R e e e nnn e neennee s 13
3.1 Data Iteration and ChUNKINGcoooiiiiiiieie e 13
3.1.1 Data Iteration and BrightServer™cccccooiiiiiiiiiiii e 13
4.0 DA IMAPPING. ¢ eeetete ettt bbbttt bbbttt 15
4.1 Data Mapping and BrightSEIVETc.cov i 15
5.0 PUSN IMOTUIE ...ttt eneenne e e e 16
5. L ATCRITECIUIE. .. ettt ettt bbbt b e ne e e ens 16
5.2 Push Module XML Configuration File..........c.cccoiiiiiiiiiiiece e 17
5.3 Message StateS ANG RELMIES.......ccveviiieiice et 19
5.4 MeSSage ESCAIALIONcviiiiiiiitiiese bbb 21
5.5 PUSN MOUUIE ACCESSOIS ...cuverieeiitesiestieieeieesieie ettt sttt st sae bbb eneeneaneeneens 21
5.6 Publications and SUDSCIIPLIONScoiiiiiiiieic e 21
5.7 The Synchronisation Engine and the Push Modulecccccovoviiieieiie s, 22
6.0 How to Install and Run BrightIntegrator™c.ccooiieiiiiiiiieninie e 23
7.0 A Brief INtroduction 10 XMLccoiiiiiiiieieiieeeie e 24
8.0 How to Configure BrightIntegrator™ ... 25
8.1 .J0DS CoNfIQUIALIONccviiiicic et nre e 26
8.2 TaSKS CONFIQUIALIONc.viiiiiiiitiite sttt 27
S I8 N T (01U o1 T [OOSR 28
8.2.2 TranSTOrMALIONSceiveeieiie ettt este e e sreesteeneesreeneeens 29
8.3 Data Sets ConfigUuIAtioNccciviiiiicce et 31
ST T0 1 LSOO 33
8.3.2 BrightServerT™ooiiiiiiicii i 35
B.3.3 DB ... ettt ettt re e re et e enns 37
8314 PIONTO ...ttt n e 40
B.3.5 WD SEIVICESceveiieieeie ettt te et e st e et esraenteeneesneenne e 42
B30 EMAIL ... e 44
TR A U] o SRS 49
8.3.8 BIIgNFOIMS ...t be e 50
B.3L0 SCTIPE ettt bbbt 53
8.4 Mappings CoNFIQUIALIONcccviiiieiiee et e e e nree s 54
8.4.1 CSV (Character Separated Value) File Mapping.........ccccooereereneneneneniseseeiees 54
8.4.2 Fixed-field-length File Mapping........cccccviiiiiiiiiiece e 58
8.4.3 XML File MaPPINGceeieiieiieii ettt ste e snae e e 61
8.4.4 QUETY IMAPPING ...ttt sttt sttt sttt et e sb e b e et e e st e sreenbeeneesreenee e 62
BrightIntegrator User’s Manual Page 2 of 110

www.brightsoft.com.au Version 4.0.0

8.4.5 AP MAPPING ...ttt 64

8.4.6 EMail MAPPING......ciiiieeiie ettt sttt re e 65
8.4.7 TexXt FIle MaAPPING....c.eeiiiiiiietee e 67
8.4.8 Transformation MapPiNgcccveierireiiiie et re e 67
B0 QUETIES ...ttt sttt ettt sttt e b et e st bt et e e st e Rt e b e e Rt e R e et e e ne e nReeteene e reere e 71
8.5.1 USer DefiNed QUETIES.ccveiiuiiiiieciie ettt ettt be e be et e re e 74
8.6 AAMIN EIBMENT......oiiiiiiiee ettt enne e 76
8.7 PUSN IMOTUIE ...ttt bbbt 77
8.8 Scheduler COMPONENT.......ccuiii e 83
8.9 Data Value FOrMALLING........cceieeiiieieiiese st re e 84
8.9.1 NUMDBEr FOIMALtING.....eeviiieiieie ettt 84
8.9.2 Date FOrMALINGoiveeieiie ettt e e esre e reenre e 85
8.10 Logging ConfIgUIATION.......ccueiviiiiriiitieiieiieiee ettt bbbt 86
ST B T] o] £ OSSPSR 87
T O T {0 T 1] OSSR 88
LO.0 HOW DO 121ttt bbbttt bbbt ane et nes 89
10.1 JDBC and BrightServer import difference taskccoovviviiiiiieienicseceeee, 89
10.2 EXporting JOINEd tADIESeccvieieiiee et 89
Appendix A — API (Pronto, Web Service) Configuration File............cccccoeviiiiniiininicen, 91
AL INTFOAUCTION ..ottt bbb nes 91
AT “pre-task” ClEMENL........eciuiiiiiieiiiie e 92
ATL.2 “Group” €leMENLueiiiiiiiieiii e 92
AT1.3 “post-task’™ ElEMENT.........cciiiiiiiiiii e 9
A 1.4 7aPIS” CIEMENL ...cuiiiiiiii et 9
APPENTiX B — CroN EXPIrESSIONS.ccviititiiiiriiiiieiietesi ettt st bbb 100
B1.0 Cron DefiNItiONcoiiiieiiieie ettt 100
B1.1 Cron EXPreSSIONS.ceiuiiiieiieieite ittt sttt sttt bbbttt 100
Appendix C — Running BrightIntegrator as a Windows Service...........ccccccovevvvereieeveesnenn. 103
Appendix D — How to connect BrightServer via a secure connection using “truststore”105
AppendiX E — FOrmatting ODJECESccueiieiiiicce ettt 106
Appendix F — TaskData XIML ODJECT..........ccovuiiiieiiieieie s 107
Appendix G — Transformation Field FUNCLIONS...........c.ccoveiiiiiiicc e 108
BrightIntegrator User’s Manual Page 3 of 110

www.brightsoft.com.au Version 4.0.0

1.0 Terms and Abbreviations

BrightBuilder : Bright Software’s mobile application designer.
BrightForms : Bright Software’s form executing engine.

BrightIntegrator : Bright Software’s integration engine that allows data exchange
mechanisms to and from various data sources.

BrightServer : Bright Software’s mobile application server running on a J2EE compliant
application server.

Field User : An employee who works outside of the employer business premises most of his
or her time. S/he communicates with the company’s computer system remotely over either a
mobile network (GSM, GPRS, 3G) or a fixed landline. It is sometimes referred as “mobile
worker”.

JDBC (Java Database Connectivity) : A Java API that enables Java programs to execute SQL
statements. It allows Java programs to interact with any SQL-compliant database.

MOM : Message Oriented Middleware

Mobile Solution : A set of computer software and hardware that are used to automate data
exchange process for the mobile field users in industries such as service, sales etc. The
mobile solutions are designed and commissioned by the systems integrators.

ODBC (Open Database Connectivity) : A standard database access method.

PAS : Publish And Subscribe

P&S : Publish & Subscribe

Push : Refers to the data exchange that is initiated and controlled by the server.

Synchronisation : Refers to the data exchange that is initiated and controlled by the client
side.

BrightIntegrator User’s Manual Page 4 of 110
www.brightsoft.com.au Version 4.0.0

1.0 Introduction

Brightintegrator™ is Bright Software’s integration engine that allows data exchange
mechanisms to and from various data sources. These data sources include simple flat ASCII
text files (fixed and comma separated values), JDBC (including ODBC via JDBC-ODBC
bridge), Pronto via PIE interface, BrightServer™, BrightForms™ field clients (only as a
destination), email servers (currently only as a destination), web services etc.

The user can configure BrightIntegrator™ to exchange data in either direction between the
data sources; and can also be used to push data to the remote field users using
BrightForms™,

The data exchange is defined with an XML configuration file. The user configures a set of
jobs consisted of one or more tasks to be executed by the BrightIntegrator™ engine .

1.1 The Job Processor

The central component of the Brightlntegrator™ engine is the Job Processor (JP). JP is
mainly responsible for managing the data flow from a source to a destination. The Job
Processor can also handle the optional calculation of the difference between source and
destination data (sometimes referred as task data throughout this document), as well as the
optional grouping of the source data. JP manages the data transactions across the whole job.
It drives the data accessors to co-ordinate the data read and write. The following image shows
the simple BrightIntegrator architecture with the Job

Job
Processor
uses uses
Accessor data \ Accessor
(Reader) (Writer)

Brightintegrator Architecture

A data accessor is a component that knows how to read from and write to a particular data
source (BrightServer™, JDBC data source, file etc.). Accessors are configured in a task to
operate in read or write mode. A series of configured tasks defines a job. In simple terms, for
configured tasks in a job, the JP reads data from a source data set using an accessor operating
in reader mode, and writes the data read to a destination data set using an accessor operating
in writer mode.

BrightIntegrator User’s Manual Page 5 of 110
www.brightsoft.com.au Version 4.0.0

1.2 Push Module

Sending (pushing) a dataset to a destination as it becomes available is one of the important
requirements of any backend integration. Especially this may become critically important, for
instance, for organisations who need to push a job or service requests to the remote field

users as they receive them from their customers.

To address this requirement a special writer accessor is used : Push Accessor. The push writer
accessor incorporates the Notification module that allows Brightintegrator to send data to the
field users using the Publish and Subscribe modules. The Publish and Subscribe modules is a
rules based system that knows what data to send and where to send. This is basically a push
module that allows the server to dispatch data automatically to the field users. The following

image shows the Push module architecture:

Job scheduler
Processor

uses uses

Bl Accessor
(Reader)

.

data | (Writer)

-——=

L — — — —

h

y

Notification

o

P&S Accessor| USes

user, data

XML
Configuration

msgld, content

y

L — — — —

Thread 1 Thread 2

Module [“persists

L — — — —

Thread n

Queue

—Z

RDBMS
or
Files

Dispatchers
(Worker
Threads)

Brightintegrator Push Module Architecture

This functionality will be discussed in more detail in Section 5 - Push Module.

BrightIntegrator User’s Manual

www.brightsoft.com.au

Page 6 of 110
Version 4.0.0

2.0 Jobs and Tasks

Brightintegrator™ executes a job or a series of jobs defined in the XML configuration file.
The name of the configuration file can be passed to Brightintegrator™ as one of the
command line arguments.

A job then consists of tasks. A task is basically a read action from a data source in order to
obtain data, and then a write action to write that data to the destination. The Job Processor
creates and maintains the lifetimes of each task configured in a job. The following diagram
depicts a job.

Job 1

Task 1 Task2 | eeeeeeeee Task n

The Job Processor will create the necessary accessors to complete the read from the source
and subsequent write to the destination. The source accessor is used in the reader mode, and
the destination accessor is operated in the writer mode.

The accessor configured as the source (i.e. the data reader), reads the data and passes the data
as a set to the Job Processor. The Job Processor then writes the set received from the reader to
the writer.

A data reader (source accessor) may be able to read the data in chunks, rather then in a single
big read. The Job Processor can query the reader accessor and, if the chunking is configured
for the data set and the reader accessor supports data chunking, then the data is read from the
source in iterations and written to the destination in blocks of the specified size. The size of
the block is configurable for each data set defined (See section 3.1 Data Iteration and
Chunking for further details).

Task 1: Read from BrightServer and Write to File

BrightServer

Accessor File Accessor
(In reader mode) > Set » (Inwriter mode)
SOURCE DESTINATION

The data read from the source is converted into a set. A set is a very important logical entity
within BrightIntegrator™. It represents the basic processing unit within BrightIntegrator™,
Data arrives from the source, typically as records from the same table, or lines from the same
file. The incoming data will be formatted and arranged according to the convention of the
data source, and will need to be parsed and converted to Bright Software data types. So
finally the set will be vendor neutral and decoupled from the data source, and ready to be

BrightIntegrator User’s Manual Page 7 of 110
www.brightsoft.com.au Version 4.0.0

processed, and then written to the destination. See section 4.0 Data Mapping for further
details about how the data mapping takes place.

When it comes to writing the data to the destination, each set is matched by name from its
source to its destination. Each set contains a mapping that provides a name for each field.
Each field is also matched by name from within its source set to its destination set. In this
way, when transferring data, the set names, and the names of each field within the sets must
correspond between source and destination.

If the push accessor is used in a task as writer (destination) accessor, then the task via the
push module being used can process the incoming data and deposit the messages to the
Notification Module. Please note that the push accessor has its own configuration file that
contains the necessary configuration aspects of the push module. See Section 5.0 Push
Module for further details about the accessor writer.

2.1 Transaction Support

A task may be executed in the context of a transaction. JP manages transactions by tightly
controlling the data writer for each task. Recall that the data writer is the accessor operating
in writer mode for that task.

JP indicates the start of a transaction to the data writer, then the actual task is carried out, and
finally, if successful, JP causes the data writer to actually commit the data. In the event of a
failure, JP asks the writer to roll back the transaction data, to the same state as before the start
of the transaction.

For configuration purposes, each task entry in the job definition can specify the start and/or
end point of a transaction. These flags are as follows.

Flag | Description
bt Begin Transaction
et End Transaction

The Job Processor starts a transaction if the bt flag is set to “1”, and completes the transaction
if the et flag is set to “1”.

In this way, a group of tasks can be defined to be in a transaction together. For instance, to
have three tasks A, B and C performed as a transaction. The flags would be

A bt=1et=0
B bt=0et=0
C bt=0et=1

If a task fails in transacted group of tasks, then all the tasks in the transacted group are
deemed to have failed. In this case, all data from all of the tasks will be rolled back to the
same state as before the first task commenced.

BrightIntegrator User’s Manual Page 8 of 110
www.brightsoft.com.au Version 4.0.0

2.1.1 Auto-Commit

If both the transaction flags are turned off (i.e. bt="0" and et="0"), and the task is outside of
any transaction group, then the task is said to be in “auto-commit” mode.

This means that data will be actually written, or committed, as soon as it is received by the
data writer.

2.1.2 Auto-Commit and BrightServer™

It is recommended to use auto-commit when writing to BrightServer™, whenever possible,
especially when importing large amounts of data. In general, transactions should only be
used when dealing with data integrity across multiple tasks. Since transactions require that
all written data be temporarily stored until the commit occurs, large amounts of memory are
required. In addition, each transaction has a corresponding timeout on the application server,
which will elapse if the amount of data is too great.

2.2 Calculating the Difference

The Job Processor may be configured to calculate the difference between two data sources
being read. This feature can minimise the load and processing on the destination, hence
reducing the overall write time. For instance, if a large inventory file needs to be loaded into
the BrightServer™ database, calculating the difference (i.e. what has changed since the last
data load), and just importing the changed data will reduce the load and the processing time
for the subsequent inventory updates.

Task 1: Difference Task

File Accessor
(In reader mode)
SOURCE

Set

\ 4

NS

File Accessor
(In writer mode)
DESTINATION

Diff. Set
(cahnged data)

\ 4

BrightServer
Accessor
(In reader mode)
OLD SOURCE

Set

The task definition has a parameter that the user can use to define the previous old data set. If
the old data source is defined, then the Job Processor will read from both old and new data
sources, then calculate the difference, and finally write the difference data onward to the
destination.

Data that has been read is stored in sets. Sets are used so that data from disparate sources can
be compared. For example, using sets, it is possible to compare data from a file and a server
table. The difference between the old set and the new set is processed by matching sets of the
same name, and comparing the field values of the primary keys. (Primary keys are specified
in the data mapping). If the primary keys match, then the rest of the data in the record are
compared. If some data has changed, then the newer record is appended to the difference

BrightIntegrator User’s Manual Page 9 of 110
www.brightsoft.com.au Version 4.0.0

data, and a flag is added to the record, signifying that the record has “changed”. If the data is
identical, then nothing is appended to the difference data.

If a new record with the primary key values is not found in the old data set, then the record is
appended to the difference data, and a flag is added, signifying that the records has been
“added”. Vice versa, old records with no matching new record are said to have been
“deleted”.

The result itself is another set, and each record will have a difference status flag, “added”,
“changed”, or “deleted”. The result set is written to the destination, which must be able to
understand the difference status of each record, and act accordingly. Types of data sets that
are able to consume difference data include BrightServer™ and JDBC.

2.3 Grouping Data

The Job Processor may be configured to sort the data that has been read, into logically related
groups of data. The data that has been read will be stored in sets. By grouping the data, these
sets of records will be transformed into groups of data.

2.3.1 Group Definition

A group is a set of records from sets which are associated by grouping relationships. A group
will contain one record from the parent set and all its related records from the child set(s).

The grouping relationship describes how the member records from each set, are related to
each other.

For example let us assume that there are two data sets that have been read. These two sets are
ORDER_HEADER, containing records for new sales orders, and ORDER_ITEM, containing
records for the items that comprise the new sales orders. Now say that this new sales order
data needs to be sent to a destination data writer that only understands orders, rather than sets
or tables. This is a case we would need to transform the two sets into groups. In this case
each group will be an individual sales order. Consider the following data for tables
ORDER_HEADER, and ORDER_ITEM.

ORDER_HEADER

ORDER_ID ORDER_DATE CUST _ID

100 1/1/2004 1234

101 2//1/2004 5678

ORDER_ITEM

ORDER_ID ITEM_NO PRODUCT_ID QTY

100 1 PRD1 10

100 2 PRD2 15

101 1 PRD?2 5

101 2 PRD15 10

101 3 PRD?2 1
BrightIntegrator User’s Manual Page 10 of 110

www.brightsoft.com.au Version 4.0.0

From this example data, we would have two groups as follows:

Group 1
ORDER_HEADER
ORDER_ID ORDER_DATE CUST_ID
100 1/1/2004 1234
ORDER_ITEM
ORDER_ID ITEM_NO | PRODUCT_ID QTY
100 1 PRD1 10
100 2 PRD2 15
Group 2
ORDER_HEADER
ORDER_ID ORDER_DATE CUST_ID
101 2/11/2004 5678
ORDER_ITEM
ORDER_ID ITEM_NO | PRODUCT_ID QTY
101 1 PRD2 5
101 2 PRD15 10
101 3 PRD2 1

The way that the grouping process works, is that it takes the parent set (ORDER_HEADER
in the case above) and creates a group for each record. Thus each group is initially created,
and has its first member record. Next, the process takes each child set, (ORDER_ITEM is
the lone child set in the case above) and with the grouping relationship in mind, places each
child set record into the group that it matches, according to the relationship key field. In the
case above, the ORDER_ID is the key field that relates the ORDER_HEADER set to the
ORDER_ITEM set.

Groups are defined in the Tasks element of the configuration file. See Section 7.2.1 for more
details on groups.

It 1s also possible for a single set to be “self-grouped”. This one set will have each of its
records placed into a single group by themselves. The result is that there are as many
resulting groups as there were records in the single set. It is like an order header set being
grouped so that each order header record appears in its own group, but then there are zero
order items to be grouped into the order groups.

BrightIntegrator User’s Manual Page 11 of 110
www.brightsoft.com.au Version 4.0.0

2.4 Transforming Data

Sometimes the data read from a source needs to be slightly manipulated before it is written to
its destination. For instance a new field may be needed in the data to identify its source before
written to its destination. This would require an additional field to be created in the task data.
Using transformations, a task data (the data read from a source) can be modified to have an
extra field in addition to the fields read from the source.

Another example would be the need to merge the fields from various records in different sets
into a single record. For example, an order items may need to be combined with the fields
from their order header data.

The JP (Job Processor) can be configured to transform a task data (grouped or not) defined as
per the transformation elements in a task definition. The JP simply will process each
transformation defined for each set and transform those sets in the task data as per the
mapping and other configuration options specified in the transformation definition.

Transformation —

Task] Task
Data »| Mapping Data

Transformations are executed by the JP after finding a difference (if an old source is
configured in the task definition) and grouping the data (if the grouping options are
specified).

The transformations are defined for each set. Each set transformation can be configured to
transform the set itself, or transform the set into another set by specifying the optional output
set name. The transformed task data will then contain the new sets and the existing sets prior
to the transformations.

BrightIntegrator User’s Manual Page 12 of 110
www.brightsoft.com.au Version 4.0.0

3.0 Data Sets

Each task basically reads from a source and writes to a destination. A task is configured to
do so by naming data sets to act as the source and destination. Data sets define the locations
where the actual data resides.

Data sets come in a variety of types. These include ASCII files, BrightServer™ tables, JDBC
data sources, and more.

See section 7.3 Data Sets Configuration for the available data sets and for details on how to
configure them.

3.1 Data Iteration and Chunking

The simplest way to think of a task being performed is that all the data is read from the
source, and then that data is written to the destination. However, in the case of a large
amount of data to be transferred, this simple approach will cause problems, in the form of
unresponsiveness and timeouts.

A better way to deal with large data transfers is to use the data iteration feature of
BrightIntegrator™. Data iteration will read a “chunk” of data from the source, and then write
the chunk to the destination, and this is repeated until all of the data has been processed. In
this way, there are write operation interlaced within the read operations.

A task will be performed using data iteration if the source has a data-set limit defined. The
size of the each chunk for the iterations will be up to the defined limit. There are two
exceptions to this however. If a difference is to be processed, or if grouping has been
configured for the task, then no data iteration is possible. This is due to the fact that in both
cases, all of the data must be read and processed, before any data can be written.

REMEMBER: You cannot use data iteration and chunking when processing differences and
grouped data.

You will know that Brightintegrator is iterating and chunking the records when it displays
“INFO Iterating data from BrightServerBudgetTable to BudgetFile” on the output screen.

3.1.1 Data Iteration and BrightServer™

When using data iteration to write to BrightServer™, data chunks of multiple records will
arrive at the BrightServer™ to be processed. Consider the case where one of those records
contained some invalid data, such as a string that was too long for its field, and as such,
would not be able to be processed. The result would be that the entire chunk will fail to be
processed.

Given this scenario, if the task is in auto-commit mode, then BrightIntegrator™ will retry to
submit each record in the failed chunk, one at a time. In this way, the good data before the
bad record will still get through, and the bad record will be isolated. This then allows a
detailed error regarding the bad record to be returned to the user. This useful feature is only

BrightIntegrator User’s Manual Page 13 of 110
www.brightsoft.com.au Version 4.0.0

possible if auto-commit is enabled for the task. This is another reason why using auto-
commit is strongly recommended when writing to BrightServer™,

IMPORTANT : Use auto-commit especially when writing large amount of data to
BrightServer.

BrightIntegrator User’s Manual Page 14 of 110
www.brightsoft.com.au Version 4.0.0

4.0 Data Mapping

Since the BrightIntegrator™ allows us to read data from various disparate data sets, a need
arises for mapping between data types. The problem is that the data types on the source data
set might not be understood by the destination data set. The solution is to map all external
data types to common internal data types. In this way, all data that is read is interpreted by
the data reader and given to JP as internal types. Then any optional difference or grouping is
carried out. Finally, the data writer receives its data as internal types, which it translates to
the external types for writing.

In this way, each data set uses its own mapping to translate data to and from the internal data
types. The mapping is also used to specify the primary keys, which are used in the
processing of groups, as well as calculating differences between records.

Each data set type has its own way of representing data mappings.

4.1 Data Mapping and BrightServer

IMPORTANT NOTE: The data mapping for the BrightServer data set MUST follow the
column order of the registered table in BrightServer. It must include all table columns.

The BrightServer reader accessor populates the data set according to the column order
defined by the table configuration stored in BrightServer. If the data mapping for the writer
data set is ordered the same as the BrightServer data set, the data mappings will be easier to
determine by JP. Otherwise, JP will try to map each field at a time.

Since the query returns all the fields from the server in the column order of the table defined,
the Query <outputfields/> element does not need to be specified in the configuration file.

BrightIntegrator User’s Manual Page 15 of 110
www.brightsoft.com.au Version 4.0.0

5.0 Push Module

By definition, the data push means sending data automatically to a subscriber based on a set
time or a certain criteria of circumstances defined in a schedule. In mobile solutions, this
service allows supervisors to send data to their field users, it is more effective in terms of the
time sensitivity nature of the data that needs to be dispatched to the field as soon as it can be
and more efficient in terms of the data transfer optimisation and network usage.

The Push Module in Brightintegrator has two modules, the Push Accessor and the Push
Notification Module. Publish Module is the rule based system that knows what to send and
where to send, while it is the responsibility of the Push Notification Module to find the
destination of the data and send it.

5.1 Architecture

Job scheduler
Processor

IMS
Bl Accessor . Push Accessor| uses XML .
(Reader) data | (Writer) |~~~ 7 Configuration

4

user, data

msgld, content

~
Notification |
Queue
Module [Tpersists

Memory
or
Database

4

-——=

|

|

|

| .

I Dispatchers
| (Worker
I Threads)
|

|

|

|

L — — — ' L — — — — L — — — —

Thread 1 Thread 2 Thread n

Brightintegrator Push Mechanism Architecture

The Push Module is implemented as a BrightIntegrator accessor and will pass the user and
message details to the Notification Module. The Notification Module is hosted within the Job
Processor as a sperate component. It is instantiated via the first invocation of the Push
Accessor. From then onwards, the push accessor writer object processes the incoming task
data and deposits the messages to the Notification Module.

BrightIntegrator User’s Manual Page 16 of 110
www.brightsoft.com.au Version 4.0.0

The Notification Module then handles the data distribution using the Dispatcher objects. The
messages are persisted in a queue for disaster recovery and resumption of message delivery
purposes. The default message store type is memory. That means that the message queue is
not saved between restarts of Brightintegrator.

The dispatcher objects use native Brightintegrator accessors to send data to its destination.
This provides a consistent way of reading data from a source and writing it to a destination.
All the accessors that support the writer functionality can be used in a dispatcher
configuration to push data. For instance, it is possible to read a file content and send it to a
user via an email accessor.

The new push accessor has its own configuration file that contains all the necessary
configuration aspects including subscription and publication rules, the dispatcher
configuration and their delivery attributes.

A scheduler feature has also been implemented on top of the existing Job Processor module.
The scheduler component can trigger the data reads from the source configured based on the
job’s schedule defined. You can use simple scheduling based on an interval or use a more
complex Cron-trigger based scheduler. Read more about the Cron triggers in Appendix B.

5.2 Push Module XML Configuration File
The following is the layout of the Push Module configuration file:

<push-task version="1.0" def-version="1">
<publications>
<publication name="PublishJobs" set="jobs">
<field>tech id</field>
<field>state code</field>

<!-- more field's -->
Ll== ., ==>
</publication>
<!-- more publication's -->
</publications>

<subscriptions>
<!-— A subscription must reference a publication, optional:default-dispatcher-->

<subscription publication="PublishJobs" default-dispatcher="BFNotify">
<subscriber type="constant">

<subscriber-values>

<!-- for type=constant, the values are the actual data values -->

<value name="tech id" type="int">100</value>
<value name="state code" type="string">NSW</value>

<!-- more values, corresponding to the named fields in the referenced
publication-->

</subscriber-values>

<dispatcher-values dispatcher="BFNotify">
<!-- dispatcher-values may use default value from its subscription -->

<value name="ip" type="string">127.0.0.1</value>

<!-- more values, corresponding to parameters of the dispatcher being used-->
</dispatcher-values>
</subscriber>
BrightIntegrator User’s Manual Page 17 of 110

www.brightsoft.com.au Version 4.0.0

<subscriber type="file" file="testData/techmap.csv">
<subscriber-values>
<!-- For type=file, the values are indexing the file columns -->

<value name="tech id" type="int">1</value>
<value name="state code" type="int">2</value>

<!-- more subscriber-value's -->
</subscriber-values>

<dispatcher-values dispatcher="BFNotify">

<!-- dispatcher-values may use default value from its subscription-->
<value name="ip" type="int">3</value>
<!-- more values, corresponding to parameters of the dispatcher being used-->

</dispatcher-values>
</subscriber>
<!-- more subscriber's -->
</subscription>
<!-- more subscription's -->
</subscriptions>

<dispatchers>
<!--Dispatcher "destination" - name of the dataset to be used to send data-->
<dispatcher name="BFNotify" destination="BF">
<attribs>
<value name="retries" type="int">3</value>
<!-- more "value"s -->
</attribs>
<escalations>
<!-- executed on-success (0..many) -->
<escalation execute="on-success">
<!-- destination writer -->
<destination>Email</destination>
<!-- ANDed field values in the header record -->
<condition/>
<!-- New field values in the header record. Will replace existing ones -->
<write-values/>
</escalation>

<!-- executed on-failure (0..many) -->
<escalation execute="on-failure">
<destination>BSAccessor</destination>
<condition>

<value name="STATUS" type="int">0</field>
</condition>

<write-values>

<value name="FAILED FLAG" type="int">1</field>
</write-values>

</escalation>

<!-- executed always (0..many) -->
<escalation execute="always">
<!-- destination writer -->
<destination>Email</destination>
<!-- ANDed field values in the header record -->
<condition/>
<write-values/>
</escalation>
</escalations>
</dispatcher>

<!-- more dispatcher's -->
</dispatchers>

<notifier>
<attribs>

BrightIntegrator User’s Manual Page 18 of 110
www.brightsoft.com.au Version 4.0.0

<value name="max-retries" type="int">3</value>

<value name="retry-interval" type="int">1800</value>

<value name="delete-failed-jobs" type="boolean">yes</value>
</attribs>

<message-store type="database">
<value name="url" type="string">127.0.0.1</value>
<value name="jdbc-driver" type="string">drivername</value>
<value name="username" type="string">bsuser</value>
<value name="password" type="string">bspassword</value>
</message-store>
</notifier>

</push-task>

5.3 Message States And Retries

Messages to be sent are persisted in a queue called the message store. This will contain
details of the failed message i.e. the data to be sent or where to send it so that it can be resent
to the destination.

There are two types of message stores that can be configured in Brightintegrator: A memory
based message queue and a relation database based message queue. The memory based
message store is a temporary queue and lost between the restarts of Brightintegrator.

By default, if there is no message store defined, the memory message store type is used.
When a database message store is used, then Brightintegrator needs a table with the
following name and structure created.

SQL scripts are distributed in the “resources” directory in BrightIntegrator distribution.

BS_MSG_STORE

Column Name Type Description

MSG_ID Integer Unique message id

DT_ACTION DateTime Date and time of the last action
on the message (created, or
updated)

MSG_STATUS Integer Message state, see table and

diagram below for integer values
and descriptions; and the
corresponding state diagram.

RETRIES Integer No of current retries for the
message.
CONTENT Image/Blob This column is the binary blob

column where the serialised
message object is stored.

BrightIntegrator User’s Manual Page 19 of 110
www.brightsoft.com.au Version 4.0.0

Message Status and its corresponding descriptions are given in the table below.

Message Status Description
0 Ready
1 Idle
2 Sent
3 Failed
4 Archived

The message status state machine is as follows.

successfully
sent

idle time
elapses

created

failed to
send

failed to send
after retries

When a message is created, it will be in the “Ready” state and persisted to the message store.
When the message is sent to its destination successfully, then it will be in the “Sent” state,
and will also be removed from the message store.

If the message could not be sent, then it will be put into the “Failed” state. If the “retries”
option is configured (i.e. > 0), then the Push Module will put the message into the “Idle” state
for the duration of the configured “idle time”.

When the idle time elapses, then the message will again be in the “Ready” state and the Push
Module will try to send it to its destination. If the message could not be sent after the
configured “retries”, then it will be put into “Archived” state in the message store.

“Archived” messages can be configured to be deleted automatically from the message store if
the “delete failed messages™ option is configured in the Push Module.

The “retries”, “idle time” and “deleted failed message” are attributes of the Notification
Module and can be configured from the “notifier” section of the Push Module XML
configuration file using the <max-retries>, <retry-interval> and <delete-failed-jobs>
elements. See the Push Module Configuration in Section 8 for further details on the
“notifier” elements.

BrightIntegrator User’s Manual Page 20 of 110
www.brightsoft.com.au Version 4.0.0

5.4 Message Escalation

The Push Module can also be configured to escalate messages. These escalation actions can
be executed 1) on-failure, 2) on-success or 3) always.

If any escalation is configured, the Push Module will send the failed or successful message to
the configured destination. The Push Module will also be able to escalate message based on
the message content (field values in the task data of the message) to different destinations.
The escalation configuration will also allow the designer to overwrite the existing message
values, which, in turn, can be used to provide a feedback back to the source of the message.

Escalation destination points can be one of the available Brightintegrator accessors. That will
mean that the message success or failure can be notified back to BrightServer, or a JDBC
accessible database table, or an email to system administrator etc.

5.5 Push Module Accessors

There are a couple of data-sets available for the Push Module, namely:

e BrightForms — defines the configuration for BrightForms client that the message will be
sent to or a sync-rule will be executed upon.

e Push — defines the Push Module configuration file.

e Email — defines the email configuration for the escalation messages.

The usual accessors such as BrightServer, File and JDBC tables can also be used as a
destination data-set for the push module.

Each of these accessors has different attributes that can be overwritten based on the
subscriber details. For example, IP addresses of each BrightForms device for each field users.

These accessors will be discussed in detail in the Data Sets Configuration section.

5.6 Publications and Subscriptions

Publications and subscriptions are always defined within the context of the set data, therefore,
each publication and subscription is associated with a specific set data. Publications are
defined by the query or set data of an accessor. The Push Module can have many publications
and subscriptions.

Before you can send data to a subscriber, you must first create a publication for that data and
also create the subscriptions (who that data is to be sent to). Each publication can contain
many different fields to limit the records to send to each subscribers, this allows you to filter
the task data based from the set data you defined in the Publication element of the Push
configuration file. Each subscription refers to (subscribes to) a specific publication thus
should also contain the same number of fields that the publication refers to.

BrightIntegrator User’s Manual Page 21 of 110
www.brightsoft.com.au Version 4.0.0

5.7 The Synchronisation Engine and the Push Module

Brightintegrator works hand in hand with the normal synchronisation engine of
BrightSoftware platform. If using the BrightForms accessor, the BrightBuilder developer
should incorporate the normal synchronisation process in mobile application. If using
background synchronisation, this should also be included in the application program.

BrightIntegrator User’s Manual Page 22 of 110
www.brightsoft.com.au Version 4.0.0

6.0 How to Install and Run Brightintegrator™

To install Brightintegrator, simply uncompress the contents of Brightintegrator_2_X_ X.tgz
to a hard disk directory, i.e. c:\brightintegrator.

Follow the steps below to run Brightintegrator:
1. Open a command prompt window
2. Change directory to Brightintegrator installation directory, i.e. c:\brightintegrator
3. Type the command run in the command prompt.

This will execute BrightIntegrator™ using the default config file, which is config.xml in the
conf directory. An alternate config file can be specified on the command line using —c.

For example, run —c D:/MyConfig.xml

The other command line option is —n, which means “no retries”. By default, if
BrightIntegrator™ experiences an error during a job, then the next time it runs that job, it will
retry by starting at the last task in that job that was successful. By specifying the —n
command line option, BrightIntegrator™ will start each job from the first configured task
instead.

The location and name of the last-run file (see Chapter 9) can be set by using [-I|--lastrun
LASTRUN_FILE_NAME] option. The default location of this file is the conf directory.

Important: Ensure that the tables required in the BrightServer data set has been created
and registered in BrightServer through the Management Console.

BrightIntegrator User’s Manual Page 23 of 110
www.brightsoft.com.au Version 4.0.0

7.0 A Brief Introduction to XML

This section is designed for users that are unfamiliar with XML documents. If you are
familiar with XML basics proceed to next section on configuring Brightintegrator.

XML stands for Extensible Markup Language. It is a structural and semantic language, not a
formatting language. XML documents form a tree structure, made of elements. Element and
attribute names reflect the kind of the element being described.

<PERSON ID="pll00" GENDER="M">
<NAME>
<FORMAT type="1"></FORMAT>
<GIVEN>Judson</GIVEN>
<SURNAME>McDaniel</SURNAME>
</NAME >
<BIRTH>Birthday
<DATE>21 Feb 1834</DATE>
</BIRTH>
<DEATH>
<DATE>9 Dec 1905</DATE>
</DEATH>
</PERSON>

In this example PERSON is the root element and has several child elements. Every element is
opened and closed with a start tag (<KPERSON>) and end tag (</PERSON>). An XML
element is everything from (including) the element's start tag to (including) the element's end
tag.

PERSON is the parent element of NAME, BIRTH and DEATH. NAME, BIRTH and
DEATH are siblings because they have the same parent.

An element can have element content, mixed content, simple content, or empty content. An
element can also have attributes.

In the example above, PERSON has element content, because it contains other elements.
BIRTH has mixed content because it contains both text and other elements. DATE has
simple content (or text content) because it contains only text. FORMAT has empty
content, because it carries no information.

XML elements can have attributes. Attributes offer information about a particular element. In
the example above, PERSON has two attributes 1p="p1100" and GENDER="M". The
attribute named ID has the value "p1100". The attribute named GENDER has the value
IIMII.

BrightIntegrator User’s Manual Page 24 of 110
www.brightsoft.com.au Version 4.0.0

8.0 How to Configure Brightintegrator™

Configuration of Brightlntegrator™ is carried out by editing the XML configuration file.
The overall structure of Brightintegrator xml configuration file is as follows:

<integrator version="2.0">
<jobs version="2.0">
<job name="ExportBarCodesJob">
<task-entry name="ExportBarCodesTask" bt="1" et="1"/>

<!--List more task-entry here... -->
</job>
<!--List more jobs here... —--—>
</jobs>

<tasks version='2.0'>
<task name="ImportBarCodesTask" >

<!--Task Details... -->
</task>
<!--List more task here... -->
</tasks>
<queries>
<query name="BarcodeQuery">
<!--query details... -->
</query>
<!--List more queries here... -->
</queries>

<data-sets>
<data-set name="BrightServerBarCodeTable" type="BrightServer">

<!--data-set details... -->
</data-set>
<!--List more data-sets here... --—>
</data-sets>
<mappings version = "2.0">
<mapping name="BarcodeQuery" type="query">
<!--mapping details... -->
</mapping>
<!--List more mappings here... -->
</mappings>
<schedules>

<schedule name ="SimpleSchedule" type="simple">
<value name="interval" type="int">300</value>
</schedule>
<schedule name ="CronSchedule" type="cron">
<value name="cron-expression" type="string">0 0/5 * * * ?</value>
<!--List more values here... —-—>
</schedule>
<!--List more schedules here... -->
</schedules>
</integrator>

BrightIntegrator User’s Manual Page 25 of 110
www.brightsoft.com.au Version 4.0.0

Elements in “integrator”

Element Name Description Required
jobs Defines the jobs to be executed within Brightintegrator. Yes
This consists of one or more tasks elements.
tasks Describes the task details i.e. source and destination data Yes
sets, referred by the jobs elements.
queries States what data are to be transferred. Used by BrightServer Yes
and JDBC data-sets.
data-sets Data sets define the locations where the actual data resides. Yes
mappings This element provides a unique, logical name for each data Yes

field in the data set.

The file must contain the following elements: jobs, tasks, queries, data-sets, and mappings.
The details of each element are provided in the following sub-sections. Also refer to the
default configuration file, config.xml, located in the conf directory of Brightintegrator
installation directory.

8.1 Jobs Configuration

Each job must have a name, and consists of one or more task-entry’s that will be executed in
order of appearance. Each task-entry names the task that is to be executed.

<job name="MyJob”>
<task-entry name="AutoCommitTask" bt="0" et="0"/>
<task-entry name="TransTaskl" bt="1" et="0"/>
<task-entry name="TransTask2" bt="0" et="0"/>
<task-entry name="TransTask3" bt="0" et="1"/>
</job>

In the above example, the first task to be executed will be an AutoCommitTask, which is said

to be in “auto-commit” mode. This task will write its data as soon as it is sent to the data
writer. The following three tasks will be executed sequentially, as a transaction.

Attributes of “job”

Attribute Description Required
name The name of the job. Yes
schedule The name of the scheduler component to be No
used to trigger the job executions.
continue-on-error [fspecified and set to “yes”, then if a task fails, No

BrightIntegrator will continue with the next task | Default set to “no”
defined in the job. If the task failed is in a

transaction with other tasks, then

BrightIntegrator will omit the tasks in the same

transaction, and execute the next task that falls

outside of the transaction.

BrightIntegrator User’s Manual Page 26 of 110
www.brightsoft.com.au Version 4.0.0

Elements in “job”

Element Name Description Required

task-entry The name of the task that will be executed in order of Yes
appearance.

Attributes of “task-entry”

Attribute Description Required
name The name of the task to be executed. Yes
bt The begin transaction flag. Refer to overview in section No, default is zero
2.1 Transaction Support
et The end transaction flag. Refer to overview in section No, default is zero

2.1 Transaction Support

8.2 Tasks Configuration

Each task must have a name attribute, a source element, and a destination element. Here is
a sample task definition:

<task name="MyTask”>
<source>BarcodeFile</source>
<destination>BrightServerBarCodeTable</destination>
<description>
<! [CDATA[Read barcode table records from file]]>
</description>
</task>

Attributes of “task”

Attribute Description Required

name The name of the task. This name will be referred Yes
to by the jobs.

Elements in “task”

Element Name Description Required
source The name of the data-set that will be read from, and Yes
provide the data.
destination The name of the data-set that will be written to, and Yes
receive the data.
description Provides a brief description of the task. No

old-source The name of the data-set that will be read from, in No, this element

BrightIntegrator User’s Manual Page 27 of 110
www.brightsoft.com.au Version 4.0.0

addition to the source. Then difference between will trigger the

both sets of data will be written to the destination. difference
Refer to overview in section 2.2 Calculating the processing.
Difference.

grouping This element defines the relationships that will be No, this element
used to associated data into groups. See subsection | will trigger the
7.2.1 Grouping for details. group processing.

8.2.1 Grouping

A task may declare a grouping element that will trigger the group processing algorithm. This
will group associated data records together according to the relationships defined here. Refer
to overview in section 2.2 Grouping Data.

Here is a sample task definition that contains grouping:

<task name="GroupTask”>
<source>OrdersFile</source>
<destination>PIEServer</destination>
<grouping>
<relationship>
<src set="OrderHeader">
<key>0ID</key>
</src>
<dst set="OrderItem">
<key>0ID</key>
</dst>
</relationship>
</grouping>
</task>

The above sample extends the example use case discussed in Section 2.3 Grouping Data. In
this case, we have OrderHeader and Orderltem files arriving as the source. We want to group
the incoming data into orders, and the way that the data in the two files relates to each other,
is via the OID, or Order Identification Number. Each OrderHeader record contains a unique
OID. Each Orderltem shows that it belongs to an OrderHeader, by also having an OID.

Now relating this use case to the sample task-grouping element, we see that the grouping
element contains a relationship element. The grouping may contain one or more
relationships. The exact number of relationships required is equal to the number of sets in the
source data, minus one. In this use case we have two sets, OrderHeader and Orderltem.
Therefore we must define exactly one relationship.

The relationship element must contain a src (source) and a dst (destination) element. A
relationship is one-to-many, from source to destination. Both src and dst must have a nhame,
which corresponds to the name of a set in the incoming data, and a key element, which names
the field used to relate the two sets.

Elements in “grouping”
Element Name Description Required

BrightIntegrator User’s Manual Page 28 of 110
www.brightsoft.com.au Version 4.0.0

relationship This element defines the relationship keys of the Yes, if grouping
source (parent) and destination (child) sets. IS required.

Elements in “relationship”

Element Name Description Required
src The source set to be used in the relationship. Yes, if grouping

IS required.
dst The destination set to be used in the relationship. Yes, if grouping

IS required.

Attributes of “src¢”/”dst”

Attribute Description Required
set The name of the set in the incoming data. Yes, if grouping is
required.

Elements in “src¢”/”dst”

Element Name Description Required
key The name of the field that relates the two sets. Yes, if grouping
is required.

8.2.2 Transformations

A task may declare a <transformations> element that may contain a list transformation
defined by <transformation> elements. This will group associated data records together
according to the relationships defined here. Refer to overview in section 2.4 Transforming
Data.

Here is a sample task definition that contains transformation:

<task name="TransformTask”>
<source>InData</source>
<destination>OutData</destination>
<transformations>
<transformation set="OrderHeader" output-set="NewOrderHeader">
<mapping>OrderHeaderTransformMapping</mapping>
</transformation>
</transformations>
</task>

The above sample specifies a transformation that will transform the OrderHeader set read
from InData source and create a new NewOrderHeader set in the task data.

BrightIntegrator User’s Manual Page 29 of 110
www.brightsoft.com.au Version 4.0.0

Attributes in “transformation”

Element Name
type

set

output-set

mode

Description
Type of the transformation

“mapping” a transformation using a mapping

“script” a transformation using a script

Name of the set to be transformed

If the set is to be transformed into a new set, then
use this attribute to define the destination set name.
The transformed task data will contain a new set
with this name specified. If this attribute is not
specified, then the new transformed set, will replace
the input set.

Normally all of the transformations, by default, are
executed just before the data is written to its
destination data source. However using this
attribute, the mode (or the execution sequence) of a
transformation can be configured. The available
modes are as follows.

“source”: The transformation is executed just after
the data is read from the source.

“oldsource” : The transformation is executed just
after the data is read from the old source. The old
source data is compared with the source (latest
data) for difference processing.

“destination” : The transformation is executed just
after the data is written to its destination.

Elements in “transformation”

Element Name
mapping

script-name

record-state

Description

Name of the mapping to be used in
transformation. This is used of the type is of a
“mapping”.

Name of the script to be executed for the
transformation. This is used only if the type is of a
“script”.

This optional element allows the change of record
state of all the records in the set to be modified to
the state specified by the element. The valid
values are as follows.

BrightIntegrator User’s Manual
www.brightsoft.com.au

Required

No
(default is

G‘mapping’,)

No

No

No
(default is
“destination”)

Required
Yes

No

Page 30 of 110
Version 4.0.0

A = Added — All the records will be marked as
added (new)

M = Modified — All the records will be marked as
modified (updated)

D = Deleted — All the records will be marked as
deleted (removed)

ignore-add This optional element allows the filtering the No
records with the “added” (new) record status to be | (Default value is
excluded from the set (i.e. be removed from the “no” if not
set). present)

The valid values are “yes” or “no”.

ignore-modified This optional element allows the filtering the No
records with the “modified” (updated) record (Default value is
status to be excluded from the set (i.e. be removed “no” if not
from the set). present)

The valid values are “yes” or “no”.

ignore-deleted This optional element allows the filtering the No
records with the “deleted” record status to be (Default value is
excluded from the set (i.e. be removed from the “no” if not
set). present)

The valid values are “yes” or “no”.

8.3 Data Sets Configuration

Data sets define the locations where the actual data resides. The following is an excerpt of
the data-set layout:

<data-set name="OrdersFile” type="File”>
<!—data-set details -->
</data-set>

Each data-set must have a name and a type attribute. An optional attribute is limit. This will
activate data chunking. See section 3.1 Data Iteration and Chunking for further details.

Attributes of “data-set”

Attribute Description Required
name The name of the data-set to be used by the task. Yes
type The type of the data-set. Can be a file, Yes

BrightServer, Pronto, JDBC dara-set, Email, Push
or BrightForms accessor.

limit Defines the data chunking size. No

BrightIntegrator User’s Manual Page 31 of 110
www.brightsoft.com.au Version 4.0.0

There are several types of data-sets that are available; these include ASCII files,
BrightServer™ tables, JDBC data sources, BrightForms accessor and more. Each data-set has
its own XML layout which will be detailed in the following sub-sections.

BrightIntegrator User’s Manual Page 32 of 110
www.brightsoft.com.au Version 4.0.0

8.3.1 File

A File data-set contains a sets element, which itself contains one or more set elements. Each
set corresponds to a file. The following example extends the orders use case, having two
sets/files, comprising the new order data.

<data-set name="OrdersFile” type="File”>
<sets>
<set name="OrderHeader">
<file-name>E:/bi2/test/ORDER HEADER.TXT</file-name>
<mapping>OrderHeaderCSVMapping</mapping>
</set>
<set name="OrderItem">
<file-name>E:/bi2/test/ORDER ITEM.TXT</file-name>
<mapping>OrderItemCSVMapping</mapping>
</set>
</sets>
</ data-set>

Attributes of File “set”

Attribute Description Required
name The name of the set. Yes

Elements in File “set”

Element Name Description Required

file-name | Contains the name of the file to be read or written to. This Yes
filename may contain wildcard characters * and ?
When writing, the filename may contain the
Brightintegrator value marker, for producing variable file
names. See section 8.3.6.1 for details.
When reading, if the filename starts with “http” then the
file will be treated as being read from a URL using http.

mapping The name of the mapping that will be used to map the data Yes
fields in the file, and define the data types. See overview in
section 4.0 Data Mapping, and details in section 7.4
Mappings Configuration

append If set to yes, then when writing to this data-set, information ' No; defaults
will be appended, if the file already exists. Otherwise the to “yes”.
file will be rewritten from the beginning.

include- If set to ‘yes’, then when writing to this data-set, and if it is A No; defaults
header a CSV or Fixed file, and if the file is being created without @ to false/no
append, then the first line will be the field names either
delimited by separators or in fixed length fields. If the
data-set is being read, then the first line will be ignored.

after-read- If setto “yes” then every time this set/file has been No
delete successfully read, the source file is deleted. This minimises
the housekeeping of files created by BrightIntegrator.

BrightIntegrator User’s Manual Page 33 of 110
www.brightsoft.com.au Version 4.0.0

after-read- Specifies a file name. If this element is specified, then No

copy-to every time this set/file has been successfully read, the
source file is copied using the specified file name.
after-write- Specifies a file name. If this element is specified, then No
copy-to every time this set/file is successfully written, the

destination file is copied using the specified file name.

ignore-not- By default, an exception is thrown when the set/file to be No; defaults
exist read does not exist. If this element is given as true/yes, and | to false/no
if the file is missing for this set, then this set/file will be
ignored for reading data.

multi-file Accepted values “first-match” or “all”. This element No ; defaults
defines the behaviour when wildcard characters appear in to first-
the file-name element. First-match is the default behaviour, match
which means that the first file matching the filename
pattern will be taken as the filename for this set. If the
element value is “all”, then all files matching the filename
pattern will be read, and all their data appended to the set.

xslt-file The mapping element must be set to “xml” for this element No
to apply. This element optionally specifies a file name for
the XSL transform that will be applied to the XML output,
before the output file is written.

fop-output The xslt-file element must be specified for this element to No,
apply. This element optionally enables processing of XSL | accepted
Formatting Objects (XSL-FO). The result from the XSL values:
transformation is assumed to be a Formatting Object tree, “pdf”,
and BrightIntegrator renders the resulting pages in the “mif”, “pcl”,
specified format. For details, see Appendix E — Formatting = “ps”, “txt”,
Objects. “svg”,
“print”
BrightIntegrator User’s Manual Page 34 of 110

www.brightsoft.com.au Version 4.0.0

8.3.2 BrightServer™

A BrightServer™ data-set contains various elements which identify a server, its connection
parameters, and name the query to be run on the server. It also contains a sets element,
which itself contains one or more set elements. Each set corresponds to a server table. Here
is an example:

<data-set name="ServerTablel" type="BrightServer" limit=64>
<url>localhost:8080</url>
<username>bsadmin</username>
<password>changeit</password>
<query>Queryl</query>
<sets>
<set name="TABLE1">
<table-name>TARLE1</table-name>
<mapping>Queryl</mapping>
</set>
</sets>
</data-set>

Note: BrightServer™ data-sets behave slightly different with respect to the data-set limit

attribute. If a non-zero positive number is specified, then data will always be read in chunks
of 64. So the value for the limit is effectively overridden to be 64.

Elements in BrightServer “data-set”

Element Name Description Required
url The IP address and port number for the Yes.
BrightServer™,
use-ssl Instructs Brightintegrator to initiate connection to No
BrightServer via a secure https port specified inthe | Defaults set to
url string above. “no”/’false”
use-compression Instructs Brightlntegrator to turn the compression No
ON when communicating with BrightServer. All Defaults set to
the data will be compressed before sent to server. “no”/’false”
username The user name that will be used to log in. Yes.
password The password that will be used to log in. Yes.
query The name of the query that will be run on the Yes
BrightServer™., See Section 6.5 Queries
is-incremental |f setto Yes, then only the incremental data will be No
returned by the read. Otherwise, it will read Defaults to
everything from this data set. “no”/”false”
sets Contains one or more set elements. Yes

Attributes of BrightServer “set”

Attribute Description Required
name The name of the set that corresponds to a server Yes
table.
BrightIntegrator User’s Manual Page 35 of 110

www.brightsoft.com.au Version 4.0.0

Elements in BrightServer “set”

Element Name Description Required
table-name The name of the table for the set. This table will Yes.
feature in the data-set query above.
mapping The name of the query mapping that will be used to Yes

map the data fields in the server table, and define
the data types. See overview in section 4.0 Data
Mapping, and details in section 7.4 Mappings
Configuration

BrightIntegrator User’s Manual Page 36 of 110
www.brightsoft.com.au Version 4.0.0

8.3.3JDBC

A JDBC data-set contains various elements which identify a server, its connection
parameters, and name the query to be run on the server. It also contains a sets element,
which itself contains one or more set elements. Each set corresponds to a server table.

Here is an example:
<data-set name="JDBCBarCodeTable" type="jdbc" limit="5">
<url>jdbc:microsoft:sqglserver://server:port;
DatabaseName=dbname; SelectMethod=cursor</url>
<username>user</username>
<password>password</password>
<jdbc-driver>com.microsoft.jdbc.sqglserver.SQLServerDriver
</jdbc-driver>
<query>BarcodeQuery</query>
<sets>
<set name="tblBarcode">
<table-name>tblBarcode</table-name>
<mapping>BarcodeQuery</mapping>
</set>
</sets>
</data-set>

Elements in JDBC “data-set”

Element Name Description Required
url The JDBC URL used to connect to the data source. This Yes.
defines the database connection string.
username The user name that will be used to log in. Yes.
password The password that will be used to log in. Yes.
jdbc-driver The name of the JDBC driver to be used to connect to this Yes.

data source. BrightIntegrator™ will load and instantiate
this driver, via the JDBC driver manager.

query The name of the query that will be run on the data source. Yes
See Section 7.5 Queries for more details.
sets Contains one or more set element. Yes

Attributes of JDBC “set”

Attribute Description Required
name The name of the set. Yes

Elements in JDBC “set”

Element Name Description Required
table-name The name of the table for the set. This table will Yes.
feature in the data-set query above.
mapping The name of the mapping that will be used to map the Yes

data fields in the server table, and define the data
types. See overview in section 4.0 Data Mapping, and
details in section 7.4 Mappings Configuration.

BrightIntegrator User’s Manual Page 37 of 110
www.brightsoft.com.au Version 4.0.0

query The name of the query to be used to read this set. If Optional
this element is not specified, then the main query of
the data source is used. If this is specified, then the
main query of the data source is not used (Since
Version 3.1.0)

8.3.3.1 Difference between the main <query> of the data-set and <query>
element of sets ?

When reading a single table using the JDBC accessor there is no difference between those
two elements. If the <query> element is not defined for the set, then Brightintegrator will use
the <query> element defined for the <data-set> element. If the <set> element has its own
<query> element then, the main <query> will not be used at all.

There is however a very important difference when reading multiple tables (sets) from the
JDBC accessor. The <query> element defined for each <set> element will be used to define
the SQL query to fetch the result set from the JDBC data source. If a <query> element is
defined for the set, each set (i.e. each table), will use its own <query> element and
<mapping> to fetch the data, and the main <query> will be ignored.

If multiple tables are read, and each <set> does not have a <query> element defined for it,
then the main <query> element will be used repeatedly for each set to be read from the JDBC
source. The way the <query> is used in the instance is as follows.

Let’s assume we have a parent table (table-1) and several children (table-2 ... table-n). The
following pseudo code is used to generate the SQL SELECT statement to fetch the data.

For each table-x
Include table-i mapping output as defined by the <mapping> element
For i=0 to i-x
Append conditions defined for table-i
If (i>0) append table relationship for table-(i-1) = table-i

Example for a query containing P (parent table), C1 (child 1) and C2 (child 2) is given below.

To fetch P records the following SELECT statement will be constructed.
Select <output columns defined for P>
From P
Where <P column conditions>

To fetch C1 records the following SELECT statement will be constructed.
Select <output columns defined for C1>
From P, C1
Where <P column conditions> AND
<P->CL1 relationship> AND <C1 column conditions>

BrightIntegrator User’s Manual Page 38 of 110
www.brightsoft.com.au Version 4.0.0

To fetch C2 records the following SELECT statement will be constructed.
Select <output columns defined for C1>
From P, C1, C2
Where <P column conditions> AND
<P->C1 relationship> AND <C1 column conditions> AND
<C1->C2 relationship> AND <C2 column conditions>

IMPORTANT NOTE: When defining query conditions, the above SQL generation must be
kept in mind. Since certain conditions may be included or excluded depending upon which
table is being read, some illegal SQL statements may be generated by Brightintegrator as a
consequence.

8.3.3.2 How to specify parameterized date-time ranges for JDBC queries?

In order to specify a parameterised value which is determined at the run time, BV Bright
Software value markets can be used in the value string by the <value> element in the query
<condition> section. The possible combinations are as follows.

BVS _DATE_; xBV
Where x is the minutes to be added (if a positive number is specified), or to be subtracted (if a
negative number is specified) from the current system time.

Example : For instance last 24 hours period can be specified using (60*24 = 1440 minutes, a
negative value specifies a date time value which is 1440 earlier than the current time)

BV DATE_; -1440BV

BVS _DATE_MIDNIGHT_; xBV

Where X is the minutes to be added (if a positive number is specified), or to be subtracted (if a
negative number is specified) from the last midnight time.

Example : For instance 12pm today can be specified using the following (60 minutes*12
hours from midnight= 720 minutes, a positive value specifies a 12 hour addition to the
midnight)

BV_DATE_MIDNIGHT ; 720BV

IMPORTANT NOTE: These BV values are only available for the JDBC queries.

BrightIntegrator User’s Manual Page 39 of 110
www.brightsoft.com.au Version 4.0.0

8.3.4 Pronto
Bright Integrator can

also connect to a Pronto data set via the PIE Connector. This allows
multiple API calls to the PIE, thus it has an additional configuration file for the API methods

to be called. Read Appendix A for further information on the API configuration file.

The Pronto data-set contains elements to identify the Pronto server, the location of the Pronto
API config file, the main set mapping to be used and the temporary file location details. Here

is an example:

<data-set name="Pr
<url>ProntoS
<config-file

ontoServer" type="Pronto" >
erverIP:1977</url>
>c:/bi2/conf/pronto config.xml</config-file>

<main-set-mapping>OrderHeaderCSVMapping</main-set-mapping>

<tx-file-loc
<sets>
<set n

</set>
</sets>
</data-set>

ation>c:\bi2\conf\</tx-file-location>

ame="Number">
<mapping>ApiMapping</mapping>

Elements in Pronto “data-set”

Element Name
url
config-file

main-set-mapping

tx-file-location

sets
submit-empty-data

Description Required
The IP address and port number for the PIE server. Yes.
The location of the additional config file dedicated for Yes.

this data-set. This file basically defines which Pronto
API methods are to be called, in response to the incoming
data. See Appendix A: API Configuration File for
details.

The name of the set that at the top of the relationship tree. Yes.
This is used for when grouped data is being consumed.
The directory that will be used to store some temporary Yes.

files. Some files are written to store state information
regarding what data has been successfully consumed.
This is useful in the case where an error occurs during
part of the way processing.

Contains one or more set element. No

By default empty data is not submitted, hence pre and No
post task APIs are not executed. Use this element to Default set
override the behaviour. When set to “yes”, to “no”

BrightIntegrator will execute the pre and post task APIs
even though the task data to be written is empty, i.e. it
does not contain any data for writing.

Attributes of Pronto “set”

Attribute Description Required
BrightIntegrator User’s Manual Page 40 of 110
www.brightsoft.com.au Version 4.0.0

name The name of the set. Yes

Elements in Pronto “set”

Element Name Description Required
table-name The name of the table for the set. This table will feature Yes.
in the data-set query above.
mapping The name of the mapping that will be used to map the Yes

data fields in the server table, and define the data types.
See overview in section 4.0 Data Mapping, and details in
section 7.4 Mappings Configuration.

BrightIntegrator User’s Manual Page 41 of 110
www.brightsoft.com.au Version 4.0.0

8.3.5 Web Services

Bright Integrator can also connect to a Web Service provider. Similarly to the Pronto data-
set, it may use one or more API calls to the web service, and thus it also has an additional
configuration file for the API methods to be called. Read Appendix A for further information
on the API configuration file.

The Web Services data-set contains elements in common with the Pronto data-set, and further
in addition, it contains elements only associated with web service details. Here is an
example:

<data-set name="WebServer" type="webservices" >
<url>www.dataaccess.com/webservicesserver/conversions.wso</url>
<config-file>c:/bi2/conf/pronto config.xml</config-file>
<main-set-mapping>OrderHeaderCSVMapping</main-set-mapping>
<tx-file-location>c:\bi2\conf\</tx-file-location>

<namespace-uri>http://www.dataaccess.com/webservicesserver/</namespace-uri>
<namespace-prefix>nsl</namespace-prefix>
<msg-type>rpc</msg-type>
<string-return-type>yes</string-return-type>

<sets>
<set name="Number">
<mapping>ApiMapping</mapping>
</set>
</sets>
</data-set>

Elements in WebServices “data-set”

Element Name Description Required
url The url for the web service. It must contain the web Yes.
service context.
config-file The location of the additional API config file dedicated Yes.

for this data-set. See Appendix A: API Configuration
File for details.

main-set-mapping The name of the set that at the top of the relationship tree. Yes.
This is used for when grouped data is being consumed.

tx-file-location The directory that will be used to store some temporary Yes.
files. Some files are written to store state information
regarding what data has been successfully consumed.
This is useful in the case where an error occurs during
part of the way processing.

service-name The SOAP action URI for Axis RPC call. No
user-name The user name to use for this API call. No
user-password The password to use for this API call. No
namespace-uri The URI for the name space to use for this API call. No
namespace-prefix The prefix that is bound to the name space. No
BrightIntegrator User’s Manual Page 42 of 110

www.brightsoft.com.au Version 4.0.0

use-ssl Whether to use SSL or not for connecting to the server. No
Defaults to no.

truststore-filename | The filename for the the trust store. Used for server No
authentication.
truststore-password | The password for the trust store. Used for server No
authentication.
result-param Names the output parameter to be interpreted as the result No
of the API call. Used for SOAP message web services.
msg-type Either msg (SOAP message web service) or rpc (RPC No
type web service, use Axis Service Call). Defaults to rpc.
string-return-type Flag that defines whether to interpret the return value No

from the RPC call as a string. Only used for RPC.
Defaults to no.

sets Contains one or more set element. No
submit-empty-data By default empty data is not submitted, hence pre and No
post task APIs are not executed. Use this element to Default set
override the behaviour. When set to “yes”, to “no”

BrightIntegrator will execute the pre and post task APIs
even though the task data to be written is empty, i.e. it
does not contain any data for writing.

Attributes of Web Services “set”

Attribute Description Required
name The name of the set. Yes

Elements in Web Services “set”

Element Name Description Required

table-name The name of the table for the set. This table will feature Yes.
in the data-set query above.

mapping The name of the mapping that will be used to map the Yes
data fields in the server table, and define the data types.
See overview in section 4.0 Data Mapping, and details in
section 7.4 Mappings Configuration.

BrightIntegrator User’s Manual Page 43 of 110
www.brightsoft.com.au Version 4.0.0

8.3.6 Email

Brightintegrator can also connect to an Email data-set (i.e. send data as an email to specified
recipients or read email messages from specified in-boxes). This allows Brightintegrator to
send escalation messages to the system administrator via email etc. With this email dataset,
you can configure the email format and also send the specific task data.

When the data is processed by the email accessor, it can be configured the process the data
either record by record (i.e. the record mode where each record is processed and sent as an
email), or as a whole task data (i.e. the taskdata mode where all the data will be processed
and sent in a single email). This is specified by the <process-by> element. See below.

Note that in the “record” mode, only a single set can be processed by the email accessor. If a
task data with more than one set is sent to the email accessor, then the email accessor will
report an exception. By default, the email accessor processes the data in the “taskdata” mode.

If the data is grouped, then each group’s data is sent as separate emails for each group.

Here is a sample Email data-set configuration:

<data-set name="EscalationEmail" type="Email" >
<host>205.214.83.216</host>
<port>25</port>
<to>admin@mail.com.au</to>
<from>bi@mail.com.au</from>
<cc-list>
<cc>it manager@mail.com.au</cc>
</cec-list>

<subject>RE:Successfully sent Order OID=SBVSOIDSBVS QTY=$BVSQty; ###.##SBVS
</subject>

<body>
<section execute="once" type="text">Dear customer,</section>
<section execute="once" type="text"> </section>
<section execute="once"
type="text">0Orders ($SBVS DATE ;dd/MM/yy$BVS)</section>

<section execute="once"
Bl R P s e e </section>
<section set="OrderItem" execute="always"
type="text">Prd=$SBVSProdSBVS OID=SBVSOIDSBVS
QTY=$BVSQty; ###.##SBVS</section>

<section execute="once" type="file">/bi3/data/body sectionl.txt</section>
</body>

<attachments/>
</data-set>

BrightIntegrator User’s Manual Page 44 of 110
www.brightsoft.com.au Version 4.0.0

The email body will look like this:

Section 1

Orderltems (24/Nov/2005 Section 3

Prod==2 OID=100 QTY=1 Section 5

Prod==2 OID=100 QTY=1

The following Email data-set is used to read the specified email account in-boxes:

<data-set name="Email" type="Email" >
<host>205.214.83.216</host>
<port>25</port>
<sets>
<set name="OrderItem">
<mapping>EmailMapping</mapping>
<email-accounts>
<email-account name="fred@slaterockandgravel.com">
<password>flintstone</password>
</email-account>
<email-account name="barney@slaterockandgravel.com">
<password>rubble</password>
</email-account>
</email-accounts>
<delete-server-msgs>yes</delete-server-msgs>
</set>
</sets>
</data-set>

8.3.6.1 BV Value Place Holder

BVS is the Brightintegrator value marker, this is used by the Data Textualizer to define and
format the task data sent to the email accessor. It uses the standard number and dateTime
formatting concepts defined in this document. You can use different files to define the
different body section elements of the email accessor.

BV places holder can be used in couple of ways.

a) A field places holder. In this case, the field name is placed between BV pairs. For
example if the value of the “Prod” field from the “Orderltem” set is to be textualized
or printed, then BVProdBV is used.

b) For system wide values such as current system date and time is to be specified, then a
system constants are used. Currently the following constants are defined.

BrightIntegrator User’s Manual Page 45 of 110
www.brightsoft.com.au Version 4.0.0

Constant Description

DATE Returns the current system date and time

NUN Returns the next unique number. The next unique
number is calculated using the milliseconds passed
since midnight 1 January 1970. Brightintegrator
ensures that a distinct number is returned each time,
if a record happens to have been processed in the
same millisecond.

NULL Returns a “null” value

_DATE_MIDNIGHT_ | Returns the starting time of today. i.e. today’s date
with 00:00:00.000 time.

An optional format field can be specified by a BV place holder. To specify the format of
the field, use a semicolon (°;’) after the field name or system constant and specify the format
for the field. This format field would be for date-time value or numeric field. For example
below BV value will read the system time and convert it to a date-time string in dd/MM/yy

format.

$BVS_DATE_;dd/MM/yy$BVS

8.3.6.2 <body> Element

<body> element is consisted of sections. Each section is defined by a <section> element. The
attributes of the <section> element are as follows.

Attribute
execute

type

set

Elements in Email “data-set”

Element Name
host
port

BrightIntegrator User’s Manual
www.brightsoft.com.au

Description Required
Section’s execution type Yes
once : The section appears only once in the text
always : The section is repeated for each record in the set
specified by the set attribute.
The type specifies the source of the text. Yes
text : The section element contains the actual text. This
text may contain BV place holders.
file : The section text is read from the file and processed.
The section element contains the file name in this case.
Name of the set to be processed by this section. If a set No
name is specified, each record is converted into text using
this section definition.
Description Required
Email host address. This can be overwritten by the Yes
Email server port number. This is set to default Port “25”. Yes
Does not need to be specified.
Page 46 of 110
Version 4.0.0

to Email address of the person to which the email is to be Yes
sent. This text may contain BV place holders.
from Email address of the person who is sending the email. Yes
cc-list List of email addresses of the persons to which the email No
IS to be carbon-copied to.
subject Subject of the email Yes
body Body of the email. This is segmented into body sections. No
You can list as many sections as required.
attachments Name of the file that can be sent with the email. This is No
optional.
process-by This specifies how the task data is to be processed by the No
email accessor. Available options for this element are as = Default =
follows. taskdata
record: Every record in a recordset is sent as a email i.e. whole
separate email task data is
taskdata: Whole task data is to be sent as a single email. | sentas a
If the data is grouped, then each group’s task data is sent single
as a single email. email.
sets Contains one or more set element. No
Elements in “cc-list”
Element Name Description Required
cc Email address of the person to which the email is to be Yes
carbon-copied to. This text may contain BV place
holders.
Elements in “body”
Element Name Description Required
section Specifies a section of the body element that is to be Yes
executed in order of appearance.
Attributes of “section”
Element Name Description Required
execute Defines if the body section is to be executed “once” or Yes
“always”.
type Defines the type of the body section, possible values are Yes
“text” or “file”. If “file”, the body section value should
specify a file name for the body section to be executed.
Elements in “attachments”
Element Name Description Required
BrightIntegrator User’s Manual Page 47 of 110

www.brightsoft.com.au Version 4.0.0

attachment Specifies the file name to be attached to this email. This Yes
text may contain BV place holders. A physical file
content or a value of the record can be attached as an
attachment to the email. This is determined by the field
attribute of the attachment element. See below.
Attributes of “attachment”
Element Name Description Required
name The name of the attachment as it appears in the email, No
which can be different to the file name specified by the
attachment element. If this attribute is not specified,
then, by default, the file name will be used as the
attachment name. This text may contain BV place
holders.
field Name of the record field to be sent as an attachment to No
the email. If this attribute is not present or empty, then
the attachment element contains the name of the
physical file to be sent as an attachment with the email.
Attributes of Email “set”
Attribute Description Required
name The name of the set. Yes
Elements in Email “set”
Element Name Description Required
email-accounts Contains one or more email-account elements. Yes.
mapping The name of the mapping that will be used to map the Yes
email messages.
Attributes of Email “email-account”
Attribute Description Required
name The name of the email account, which is used to log in to Yes
the mail server and access the user inbox.
Elements in Email “email-account”
Element Name Description Required
password The password of the email account, which is used to log Yes.
in to the mail server and access the user inbox.
BrightIntegrator User’s Manual Page 48 of 110

www.brightsoft.com.au Version 4.0.0

8.3.7 Push

Bright Integrator can also connect to a Push data-set. This allows Brightintegrator to use the
Push Module and send published data to a list of subscribers. The Push data-set simply
defines the configuration file to be used by the Push Module.

Here is an example:

<data-set name="Push" type="Push" >
<config-file>/bi/conf/fileconfig.xml</config-file>
</data-set>

Elements in Push “data-set”

Element Name Description Required

config-file Name of the Push Module configuration file to be Yes
executed by the P&S module.

See Section 5 and 8 for details on the Push Module elements and attributes.

BrightIntegrator User’s Manual Page 49 of 110
www.brightsoft.com.au Version 4.0.0

8.3.8 BrightForms

Bright Integrator can also connect to a BrightForms data set. This allows the job processor to
send and receive data to and from a BrightForms client.

The following is a sample XML configuration for a BrightForms data-set.
<data-set name="PushToBF" type="brightforms">
<server>192.168.39.58</server>

<port>8080</port>

<message-type>data</message-type>
<use-compression>yes</use-compression>

<client-column-names>FIELD1l, FIELD3</client-column-names>
<client-column-values> #BFValue UN ,LocalDesc</client-column-values>
</data-set>

Elements in BrightForms “data-set”

Element Name Description Required
server The IP address of the BrightForms client. Yes
port The port number on which the client listens for the Yes
messages.
message-type Specifies whether the data will be pushed with the Yes

message or the name of the sync rule to be sent to to the
BrightForms client. Possible types are “data” or “sync-
rule”

client-column-names | This attribute is used if the message-type is “data”. It No
specifies the names of the client columns of which values
are passed from the BrightForms data-set to the client.
This is used to populate the required client columns that
does not exists in the actual task data. See the table below
for the definition of BrightForms Special System Column
Values.

client-column-values ' These are the actual client column values used by the No
BrightForms client to populate the local client columns in
the database. This attribute is only used if the message-
type is “data”.

Please see the table below for generating special values
using the special system column values.

sync-rules This lists the names of the sync rules that will be used by Yes if
the BrightForms client to pull data from the server. It message-
may contain multiple comma separated sync rule names. type is
“sync-rule”
This attribute is used only if the message-type attribute is
“sync-rule”.
use-compression | Specifies if the data is to be compressed if the message- No

type is “data”.

BrightIntegrator User’s Manual Page 50 of 110
www.brightsoft.com.au Version 4.0.0

BrightForms Special System Column Values
BrightForms will generate the corresponding values, when it encounters these special place
holders

Value Holder Description

#BFValue UN_ Generates and uses the next unique number for the column value
_#BFValue_Null_ Puts “null” as the column value

_#BFValue SD Puts the current System Date and time as the column value

NOTE: Column names are case insensitive.

<bf-message> format

BrightForms accessor will operate in “writer” mode and push the data to the designated
BrightForms client. It will convert the task data to the standard BrightForms packed XML
format and send it using the <bf-message>.

Using the <bf-message>, BrightForms accessor can push actual data or get BrightForms to
pull data by specifying the sync rules that BrightForms needs to execute. The message format
for pushing task data is given below. Note that type attribute is set to “data”. The message
contains a task-data element which will contain the standard BrightForms data element for
sending records to BrightForms. If the compression attribute is set to “on”, then it will
contain the compressed data element in base64 format.

<bf-message version="1.0" type="data">
<task-data compression="off">
<data>
<table name="TABLE1">
<columns>
<col type="int">FIELD1</col>
<col type="string">FIELD2</col>
<col type="string">FIELD3</col>
</columns>
<records>
<record>
<item>10</item>
<item>Item 10</item>
<item>Description 10</item>
</record>
<record>
<item>1ll</item>
<item>Item 11</item>
<item>Description 11</item>
</record>
<record>
<item>12</item>
<item>Item 12</item>
<item>Description 12</item>
</record>
</records>
</table>
</data>
</task-data>
</bf-message>

BrightIntegrator User’s Manual Page 51 of 110
www.brightsoft.com.au Version 4.0.0

For triggering data pull by BrightForms an another type <bf-message> is available, which is
also given below. This message type is configured by setting the type attribute to ““sync-
rule”.

The sync-rule element within the message contains the comma separated name of the sync
rules to be executed by the BrightForms to pull data.

<bf-message version="1.0" type="sync-rule">
<sync-rule>SyncGetJobs,SyncGetCustomerList </sync-rule>
</bf-message>

Background synchronisation and Brightlntegrator

The use of BrightForms accessor in Brightintegrator should also be incorporated within the
mobile application created in BrightBuilder. If using data as the message-type, then the Push
Listener option in the mobile application should be enabled. If using sync-rule as the
message-type, then the Background Synchroniser option should also be enabled.

With the Push Listener and Background Synchroniser enabled, this allows the BrightForms
client to listen for the sync-rule to be executed and run a background synchronisation.

The sync rules used in the Brightintegrator configuration file should have already been
enabled and made as a background sync rule in the application. When Brightintegrator
triggers the data pull to BrightForms, BrightForms will then trigger the background
synchronisation process to send the data to BrightServer.

There are several considerations to be made if using the data pull mechanism of
Brightintegrator, these are as follows:
e Both the “Enable Background Synchroniser” and “Enable Push Listener” properties
of the application project is true.
e All sync rules to be executed has been enabled and the background sync-rule flag is
true.
e All the devices have unique IP addresses.

Read more about the Background Synchronisation process from BrightBuilder’s Users
Manual.

BrightIntegrator User’s Manual Page 52 of 110
www.brightsoft.com.au Version 4.0.0

8.3.9 Script

Using JavaScript in the system will provide extreme flexibility and power. This will enable
users to consume or provide data to and from non-conventional data sources.

The scripting support will be provided by using the standard existing “accessor” architecture.
This fits seamlessly into existing Brightintegrator world. Using this new accessor will be
used in the same manner similar to a JDBC accessor. It will be instantiated and used by the
sync engine as normal.

The following is a sample XML configuration for a script data-set.

<data-set name="MyScriptDataSource" type="script">
<script-name>myscript</script-name>
<query-name>MyScriptQuery</query-name>

<sets>
<set name="BI TEST">
<mapping>Mapping BI TEST</mapping>
</set>
<set name="BI TEST CHILD">
<mapping>Mapping BI TEST CHILD</mapping>
</set>
</sets>

</data-set>

Elements in BrightForms “data-set”

Element Name Description Required
script-name Name of the script to be executed Yes
query-name Name of the query that will provide payload. The query No

will most likely a user defined one. See section 8.5.1
sets Contains one or more set elements. If they are not No

defined, then the script is expected to return mapping
(FieldInfo) back to accessor.

Attributes of script “set”

Attribute Description Required
name The name of the set. Yes

Elements in script “set”

Element Name Description Required

mapping The name of the mapping that will be used to map the Yes
data fields. This could any of the following mapping
types: Query, CSV file, or fixed file.

BrightIntegrator User’s Manual Page 53 of 110
www.brightsoft.com.au Version 4.0.0

8.4 Mappings Configuration
The mappings element contains one or more mapping elements. The purpose of a mapping

is to provide a unique, logical name for each data field. A mapping element must contain a
name and a type attribute. It also contains a fields element, containing field elements.

Each field element must contain a name and (data) type attribute. Optionally a field can be
declared as being a primary key (pk=1).

The possible internal data types for each field are: (the names themselves are case-
insensitive)

string

int

boolean
double
dateTime
base64Binary
rawBinary

There are several types of mappings. They will be detailed in the following sub-sections.

8.4.1 CSV (Character Separated Value) File Mapping

The CSV file type mapping provides the details about the field specific format, as well as the
data type mapping. An example of a CSV file type mapping follows:

<mapping name="BarCodeCSVMapping" type="csv">
<fields sep="," esc="""'>
<field name="barcode" type="string" pk='1l'>
<format/>
</field>
<field name="stock code" type="int" pk='1l"'>
<format>00000000</format>

</field>
<field name="description" type="string">
<format/>
</field>
</fields>

</mapping>

Attributes of CSV “fields”

Attribute Description Required
sep Defines the character that will be used to separate | No; defaults to
the values in the file. comma
esc Defines the character used to escape from the No; defaults to
separator character. This is useful if the data double quote.

itself contains the separator character.

BrightIntegrator User’s Manual Page 54 of 110
www.brightsoft.com.au Version 4.0.0

always-esc If this flag is set to “yes”, then all the fields in the

CSV output will be enclosed with the escape
character specified by the “esc” attribute (See
above).

No; defaults
always to “no”

The “esc” character acts as a delimiter when the separator or escape character is embedded
within the field values. The following rules are applied when inserting the escape character:
1. Each field may be enclosed in double quotes if you wish, i.e. write a field as the

dog or “the dog”.

2. Any field that contains a comma must be surrounded by quotes.

3. Any field that contains double quotes (“) must be enclosed

in double quotes and

escape the double quotes in the field by preceding it with another double quote, e.g.
the field big “brown” fox should be entered as “big ““brown”” dog”.

4. Spaces within a field are significant, i.e. the 2 fields the piano and the

piano

are not equivalent since the second one contains two spaces between each word.

5. If afield is quoted, there cannot be any spaces between the leading and trailing
commas and the enclosing double guotes, i.e. the two consecutive fields the dog and
the cat should be entered as “the dog”,”the cat” or the dog, the cat

and not “the dog” , “the cat”.

For example, a table contains the following values:

ID | NAME | NOTES

1 | Jane | have a cat, a dog and a bird.
2 | John He sang "Moon River”

3 | Grey No notes

If these records were exported using a csv mapping with comma as the separator and double-

quotes (“) as the escape character, the file will look like this:

1,Jane,”l have a cat, a dog and a bird.”
2,John,“He sang “”’Moon River””
3,Grey,No Notes

If the “always-esc” is set then the output would like as follows.
“1”,"Jane”,“l have a cat, a dog and a bird.”
‘l2!’,’7Johnl’,ilHe Sang “””Moon River”””

“3”,”Grey”’”No NoteS”

Attributes of CSV “field”

Attribute Description
name The name of the field, which will be used to
identify the data elsewhere in the configuration
file.
type The internal data type of the field.
status Set to true indicates that this field holds the

change status for the whole record. The value

BrightIntegrator User’s Manual
www.brightsoft.com.au

Required
Yes

Yes

No; defaults to
false/no.

Page 55 of 110
Version 4.0.0

may be “A” for added, “M” for modified, or “D”
for deleted. In this way, a diff result may be
written to file, or an incremental file may be read.

pk Set to true/yes, defines this field as a primary key. = No; defaults to
false/no.
file-external Set to true/yes, defines this field as sourcing its No; defaults to
data in an external file. false/no.
file-path If file-external is true, then this attribute defines No; enabled by
the path containing the external files for this field. file-external.
file-name- If file-external is true, then this attribute set to No; enabled by
embedded true/yes declares that the file-name to be used for file-external.
this field is embedded in the main file. Default is No.
file-path- Used only for writing. If file-external is true, then | No; enabled by
embedded this attribute set to true/yes declares that the file- file-external.
path to be used for this field is embedded in the Default is No.
main file being written.
file-name If file-external is true, then this attribute contains No; enabled by
the filename for this field with file-path. This file-external. Can
filename may use the Brightintegrator value be omitted if file-
marker to create variable file names for each name-embedded is
record. set to true/yes
file-must-exist |f file-external is true, and this attribute is set to No; enabled by

true/yes, then if the external file for this field does file-external.
not exist, a error will be generated. Used for only = Default is No.
for reading.

Elements in CSV “field”

Element Name Description Required
format The format of the field. See section 8.9 Data Yes.
Value Formatting
trim Specifies if the string field value will be trimmed. No
convert-to-null |f this element is present, then its string value is No
used in this field to interpret null values.
compress This is an instruction to the file accessor to No

compress the field value when reading or writing.

If this element is present and set to “yes”, then
when reading a binary file, the content of the file
will be read and compressed before assigned to the
field; when writing the content of the binary field
it will be compressed before it is written to the
output file.

decompress This is an instruction to the file accessor to No
compress the field value when reading or writing.

BrightIntegrator User’s Manual Page 56 of 110
www.brightsoft.com.au Version 4.0.0

If this element is present and set to “yes”, then
when reading a binary file, the content of the file
will be read and decompressed before assigned to
the field; when writing the content of the binary
field it will be decompressed before it is written to

the output file.

Page 57 of 110

BrightIntegrator User’s Manual
Version 4.0.0

www.brightsoft.com.au

8.4.2 Fixed-field-length File Mapping

The fixed-field-length file type mapping provides the details about the field specific format,
as well as the data type mapping.

An example of a fixed-field-length file type mapping follows:

<mapping name=" BarCodeFixedMapping" type="fixed">
<fields>

<field name="barcode" type="string" pk='1l'>
<format/>
<start>1</start>
<length>24</length>
<pad-char/>

</field>

<field name="stock code" type="string" pk='1l'>
<format/>
<start>25</start>
<length>10</length>
<pad-char/>

</field>

<field name="description" type="string">
<format/>
<start>36</start>
<length>1</length>
<pad-char/>

</field>

</fields>
</mapping>

Note: The length of the last field in a fixed-field-length file is effectively ignored. When the
last field is to be read, the data reader will read all of the remaining characters on the line, for
parsing the field value.

Attributes of fixed-field length “field”

Attribute Description Required
name The name of the field, which will be used to Yes
identify the data elsewhere in the configuration file.
type The internal data type of the field. Yes
status Set to true indicates that this field holds the change | No; defaults to
status for the whole record. The value may be “A” false/no.

for added, “M” for modified, or “D” for deleted. In
this way, a diff result may be written to file, or an
incremental file may be read.

pk Set to true/yes, defines this field as a primary key. No; defaults to
false/no.
BrightIntegrator User’s Manual Page 58 of 110

www.brightsoft.com.au Version 4.0.0

file-external

file-path

file-name-
embedded

file-path-

embedded

file-name

file-must-exist

Set to true/yes, defines this field as sourcing its data | No; defaults to

in an external file. false/no.
If file-external is true, then this attribute defines the = No; enabled by
path containing the external files for this field. file-external.
If file-external is true, then this attribute set to No; enabled by
true/yes declares that the file-name to be used for file-external.
this field is embedded in the main file. Default is No.
Used only for writing. If file-external is true, then No; enabled by
this attribute set to true/yes declares that the file- file-external.
path to be used for this field is embedded in the Default is No.
main file being written.
If file-external is true, then this attribute contains No; enabled by
the filename for this field with file-path. This file-external. Can
filename may use the Brightintegrator value marker | be omitted if file-
to create variable file names for each record. name-embedded
is set to true/yes
If file-external is true, and this attribute is set to No; enabled by
true/yes, then if the external file for this field does file-external.
not exist, a error will be generated. Used for only Default is No.
for reading.

Elements in fixed-field length “field”

Element Name

format

start
length
pad-char

trim

convert-to-null

compress

decompress

BrightIntegrator User’

Description Required
The format of the field. See section 8.9 Data Value Yes.
Formatting
The (one-based) index of the first character. Yes.
The character length of the field. Yes.
The character that is used to pad the field, should the Yes.
data content be shorter then the length of the field.
Specifies if the string field value will be trimmed. No
If this element is present, then its string value is used in No.
this field to interpret null values.
This is an instruction to the file accessor to compress the No

field value when reading or writing.

If this element is present and set to “yes”, then when
reading a binary file, the content of the file will be read
and compressed before assigned to the field; when
writing the content of the binary field it will be
compressed before it is written to the output file.

This is an instruction to the file accessor to decompress No
the field value when reading or writing.

s Manual Page 59 of 110

www.brightsoft.com.au Version 4.0.0

If this element is present and set to “yes”, then when
reading a binary file, the content of the file will be read
and decompressed before assigned to the field; when
writing the content of the binary field it will be
decompressed before it is written to the output file.

BrightIntegrator User’s Manual Page 60 of 110
Version 4.0.0

www.brightsoft.com.au

8.4.3 XML File Mapping

The XML file type mapping specifies the as well as the data type mapping. This mapping
simply instructs for the data to be formatted in XML.

There are no definable fields in this mapping, since the data is self described in the XML, as
meta-data.

The XML output conforms to the TaskData XML format. Refer to Appendix F for details.

In combination with this mapping type, the file data set can optionally define an XSL
transform file that will be applied before the output file is written.

<mapping name="XMLMapping" type="xml"/>

BrightIntegrator User’s Manual Page 61 of 110
www.brightsoft.com.au Version 4.0.0

8.4.4 Query Mapping
The query mapping maps from the server table column names and data types to the internal
field names and data types. An example of a query type mapping follows:

<mapping name="JDBCQuery" type="query">

<fields>

<field name="F INT" type='int' pk='1l'>
<column-name>F INT</column-name>

</field>

<field name="F STRING" type='string'>
<column—name>F_STRING</column—name>

</field>

<field name="F BOOLEAN" type='boolean'>
<column-name>F BOOLEAN</column-name>

</field>

<field name="F DOUBLE" type='double'>
<column—name>F_DOUBLE</column—name>

</field>

<field name="F DATETIME" type='datetime'>
<column—name>F_DATETIME</column—name>

</field>

</fields>

</mapping>

Attributes of “field”

Attribute Description Required
name The name of the field, which will be used to Yes
identify the data elsewhere in the configuration file.
type The internal data type of the field. Yes
pk Set to true/yes, defines this field as a primary key. No; defaults to
false/no.
Elements in “field”
Element Name Description Required
table-name Name of the table from which the columns is Optional
sourced (Since version 3.1.0).
column-name The name of the table column for the field. Yes.
compressed Option element that tells BI if the field contains No.
compressed data. If this field is being read, then the
data will be uncompressed after it is read. If the
field is being written, then the data will be
compressed before it is written,
compress This is an instruction to the JDBC accessor to No
compress the field value when reading or writing.
BrightIntegrator User’s Manual Page 62 of 110

www.brightsoft.com.au Version 4.0.0

If this element is present and set to “yes”, then when
reading a binary file, the content of the column will
be read and compressed before assigned to the field,;
when writing the content of the binary field it will
be compressed before it is written to the destination
column.

decompress This is an instruction to the JDBC accessor to No
compress the field value when reading or writing.

If this element is present and set to “yes”, then when
reading a binary blob column, the content of the
column will be read and decompressed before
assigned to the field; when writing the content of
the binary field it will be decompressed before it is
written to the destination column.

This is equivalent to “compressed” option. They can
be used interchangeably to read a compressed
column value and decompress it.

BrightIntegrator User’s Manual Page 63 of 110
www.brightsoft.com.au Version 4.0.0

8.4.5 API Mapping

The API mapping maps from API call parameters and data types to the internal field names

and data types. An example of an API type mapping follows:

<mapping name="ApiMapping" type="api">
<fields>
<field name="F INT" type='int' pk='1l'>
<param-name>paramlnt</param-name>
</field>
<field name="F STRING" type='string'>
<param-name>paramString</param-name>
</field>
<field name="F BOOLEAN" type='boolean'>
<param-name>paramBoolean</param-name>
</field>
<field name="F DOUBLE" type='double'>
<param-name>doubleParam</param-name>
</field>
<field name="F DATETIME" type='datetime'>
<param-name>datetimeParam</param-name>
</field>
</fields>
</mapping>

Attributes of “field”

Attribute Description
name The name of the field, which will be used to
identify the data elsewhere in the configuration file.
type The internal data type of the field.
pk Set to true/yes, defines this field as a primary key.

Elements in “field”

Element Name Description
param-name The name of the table column for the field.

param-type Optional element, accepted value is “set”. In this
case the incoming data from the web service is
interpreted as an XML string for this output
parameter. The XML will be expected to be a
TaskData XML object. Otherwise, an XSL
transform can be applied beforehand, see below.

xslt-file Optional element, param-type must be set. If this
element is included then it names the file that
contains the XSL transform that will be applied to
the XML data coming back from the web service.
The result will be interpreted as a TaskData XML
object.

BrightIntegrator User’s Manual
www.brightsoft.com.au

Required
Yes

Yes

No; defaults to
false/no.

Required
Yes.
No.

No.

Page 64 of 110
Version 4.0.0

8.4.6 Email Mapping

The Email mapping maps from email messages to the internal field names and data types.
An example of an Email type mapping follows:

<mapping name="EmailMapping" type="email">
<fields>

<field name = "ID" type='string' pk='1l'>
<source>msg-id</source>
<length>50</length>

</field>

<field name = "To" type='string' pk='1l'>
<source>to</source>
<length>200</length>

</field>

<field name = "From" type='string'>
<source>from</source>
<length>200</length>

</field>

<field name = "DateSent" type="'datetime'>

<source>date</source>

</field>

<field name = "Subject" type='string'>
<source>subject</source>
<length>100</length>

</field>

<field name = "Body" type='string'>
<source>body</source>
<length>4096</length>

</field>

<field name = "Attach" type='string'>
<source>attachment-list</source>
<length>4096</length>

</field>

</fields>

</mapping>

Attributes of “field”

Attribute Description Required
name The name of the field, which will be used to Yes
identify the data elsewhere in the configuration file.
type The internal data type of the field. Yes
pk Set to true/yes, defines this field as a primary key. No; defaults to
false/no.
BrightIntegrator User’s Manual Page 65 of 110

www.brightsoft.com.au Version 4.0.0

Elements in “field”

Element Name

Description

source The message item to be used for this field.
Acceptable entries are:

msg-id — unique identifier for the message
to — recipient of the email message

from — sender of the email message

date — date/time that email was

subject — of the email message

body — of the email message
attachment-list — a comma separated list of
the names of the email attachments. Only
the names are passed, not the attachment
data items themselves.

length Optional element. If this is specified, then it will
limit the length of the data that will be passed on.
For example, if the length of the email message
body is specified as “4096”, then the maximum
length string that be passed in the body field will be
4096 characters.

BrightIntegrator User’s Manual

www.brightsoft.com.au

Required
Yes.

No.

Page 66 of 110
Version 4.0.0

8.4.7 Text File Mapping

The file mapping is used to convert task data to a text. An example of a query type mapping
follows:

<mapping name="OrderHeaderTextMapping" type="text">
<body>
<section execute="once" type="text">Dear SBVSCust$SBVS,</section>
<section execute="once" type="text"> </section>
<section execute="once" type="text">----"-"-"-"-"--———---—————— </section>
<section execute="always" type="text">Order==$BVSOIDSBVS</section>
<section execute="once"
type="file">/cvs/bi2/testdata/body sectionl.txt</section>
</body>
</mapping>

This mapping uses the data to textualizer feature of BrightIntegrator that is also used by the
email accessor. Please see Section 8.3.5 for the definition of the <body> element.

8.4.8 Transformation Mapping
This the mapping definition used to transform task data sets:

<mapping name="HeaderTransformMapping" type="transformation">
<fields>

<field name = "OID" type='int' pk='l'>
<src-type>bi</src-type>
<set-name>OrderHeader</set-name>

</field>

<field name = "Cust" type='string'>
<src-type>bi</src-type>
<set-name>OrderHeader</set-name>

</field>

<field name = "Extra" type='string'>
<src-type>bi</src-type>
<set-name>OrderHeader</set-name>

</field>

<field name = "CustDuplicate" type='string'>
<src-type>bi</src-type>
<set-name>OrderHeader</set-name>
<field-name>Cust</field-name>
<post-function>ReplaceChar, 176, "DegreeC"</post-function>

</field>

<field name = "NewString" type='string'>
<src-type>constant</src-type>
<value>AU</value>

</field>

<field name = "NewDate" type='datetime'>
<src-type>constant</src-type>
<value>1966/04/18</value>
<format>yyyy/MM/dd</format>

</field>

<field name = "COUNTRY CODE" type='int'>
<src-type>constant</src-type>
<value>1</value>

</field>

</fields>
</mapping>

BrightIntegrator User’s Manual Page 67 of 110
www.brightsoft.com.au Version 4.0.0

Attributes of “field”

Attribute Description Required
name The name of the field, which will be used to Yes
identify the data elsewhere in the configuration file.
type The internal data type of the field. Yes
pk Set to true/yes, defines this field as a primary key. No; defaults to
false/no.

Elements in “field”

Element Name Description Required

src-type This determines the source type of this field. Yes.
Possible source type are as follows.
“bi” : This means that the field value is to be
sourced from one of the fields in the set specified
by the <set-name> element.

“constant” : This means that the field value is the
constant value specified by the <value> element.

“expression” : This means that the field value
contains an expression using BV Bright Software
value markers. Couple of possible use case are as
follows.

Example 1 : An expression that can be used to
specify a column value which will contain the next
unique number generated by Brightintegrator.
BV_NUN_$BVS

Example 2 : An expression to concatenate two text
fields into a single field. Note NAME and
SURNAME are the existing fields in the data set.
Also note the space between the fields.
$BVSNAMES$BVS BVSURNAMES$BVS

Example 3 : A numeric expression to calculate the
total cost based on the quantity and price. Note that
QTY and PRICE are the existing fields in the data
set. Also note the multiplication char “*”.
$BVSQTY$BVS*$BVSSURNAMES$BVS

Example 4 : A numeric expression to calculate the
profit based on the cost and sell prices. Note that
COST and SELL_PRICE are the existing fields in

BrightIntegrator User’s Manual Page 68 of 110
www.brightsoft.com.au Version 4.0.0

set-name

field-name

value

format

post-function

the data set. Also note the subtraction char “-”.
BVSSELL PRICEBVS-3BV$COST$BVS

Example 5 : An expression that converts a field that
contains temperature in degrees Celsius to degrees
Fahrenheit. Note that CELSIUS is the existing field
in the data set.

BVCELSIUSBV*1.8 + 32

Note that the available mathematical operations are
+, -, *, /. Parenthesis (i.e ‘(‘ and)’) can be used.

See Section “8.3.6.1 BV Value Place Holder” for
available place holder.

Specifies the name of the set from which the field
values is to be fetched.

Specifies the name of the field to be fetched from
the set specified using the “set-name” element.

If this element is not specified, then the name of the
transformation field (specified by the “name”
attribute of the <field> element) will be assumed to
the same with the field name to be read.

By using this, the incoming field name can be
changed to the name specified by the field name.

This is the element that contains the constant value.

This specifies the format of the value specified by
the <value> element.

This element allows the execution of a specific
function for the further transformation of the field
value. This is available for all field types in the
transformation mapping.

This element, for instance, could be used to replace
or to remove invalid characters from the field value
before it is sent to BrightServer by using the
example following functions:

BrightIntegrator User’s Manual
www.brightsoft.com.au

Yes only if the
src-type is “bi”,
otherwise not
required

No
Used only the
src-type is bi

Yes only if the
src-type is
“constant”,

otherwise not

required

No
Only used with
<value> element
if the src-type is
constant.

No

Page 69 of 110

Version 4.0.0

The following function will replace all of the degree
special characters (“°””) with “DegreeC” string.

ReplaceChar, 176, “DegreeC”

The following function will remove the special
degree character altogether from the field.

RemoveChar,176

See Appendix G for the list of available functions
with syntax and examples.

BrightIntegrator User’s Manual Page 70 of 110
www.brightsoft.com.au Version 4.0.0

8.5 Queries

IMPORTANT NOTE: Use BrightBuilder’s “Query—>Export As Text” tool (mouse right
click on the query name icon in BrightBuilder) to use queries created in BrightBuilder in your
BrightIntegrator configuration file. This will eliminate manual creation of query objects for
BrightIntegrator query definitions.

Queries are used by BrightServer™ and JDBC data sets to help define what data is to be

transferred. The queries element contains one or more query elements. Below is a sample.
<query name="Queryl">
<tables>
<table type="parent">ORDERS</table>
<table type="child">ORDER LINES</table>
</tables>
<relationships>
<relationship>
<source name="ORDERS" type="parent" multiplicity="one">
<key>
<column order="1">ORDER NO</column>
</key>
</source>
<source name="ORDER LINES" type="child" multiplicity="many">
<key>
<column order="1">ORDER NO</column>
</key>
</source>
</relationship>
</relationships>
<condition operator="AND">
<expression p="n">
<table-name>ORDERS</table-name>
<column-name>DEVICE ID</column-name>

<op>eg</op>
<value type="string">
<! [CDATA[1224567 11>
</value>
</expression>

<expression p="y">
<parameter name="pDate">
<desc />
</parameter>
<table-name>ORDERS</table-name>
<column-name>SENT DATE</column-name>
<op>eqg</op>
<value type="dateTime" />
</expression>
</condition>
<outputfields>
<field>
<table-name>ORDERS</table-name>
<column-name>DEVICE ID</column-name>
<alias />
</field>
<field>
<table-name>ORDERS</table-name>
<column-name>ORDER NO</column-name>
<alias />
</field>

BrightIntegrator User’s Manual Page 71 of 110
www.brightsoft.com.au Version 4.0.0

<field>

<table-name>ORDERS</table-name>
<column—name>LINE_COUNT</column—name>
<alias />

</field>

</outputfields>
<orderfields>

<field>

<table-name>ORDERS</table-name>
<column-name>ORDER NO</column-name>
<orderby>asc</orderby>

</field>

</orderfields>

<stored-procedure />
<distinct-records>no</distinct-records>
<online>no</online>
<row-lock>no</row-lock>

</query>

Attributes of “query”

Attribute

Description

Required

name Name of the query. Data sets refer to this name when using this query. Yes.

Query elements contain tables, relationships, condition, outputfields, and orderfields

elements.

Elements in “query”

Element Name
tables

relationships

condition

outputfields

orderfields

distinct-
records

Description

Specifies the tables within the query. Contains table
elements, each with a type attribute, which may be
“parent” or “child”. The content of the element is the
name of the table on the server.

Specifies relationships between tables. There must be
(n-1) relationships defined, where n is the number of
tables in the query. Contains relationship elements.
See below for details.

Specifies the query condition. An empty element
means no condition, therefore each record is returned.
Contains condition elements. See below for details

Specifies the output fields for the query. Contains
field elements.

Specifies the order of appearance of the output fields.
Contains field elements.

Specifies if only distinct records are to be returned in
the resultset. If yes, does not return duplicate records.

BrightIntegrator User’s Manual
www.brightsoft.com.au

Required
Yes.

Yes, but only if
there are multiple

tables in the query

Yes, but may be
empty.

No, if
BrightServer™ is
using the query,
otherwise Yes.

No.

No, defaults to
false/no.

Page 72 of 110

Version 4.0.0

online Specifies if the query is online or not. No, defaults to

false/no.
row-lock Specified if the records are to be row-locked when No, defaults to
accessed by Brightintegrator. false/no.
Elements in “relationship”
Element Name Description Required
source The parent source for the relationship. Must have a Yes.
type='parent’ name attribute, which corresponds to the table
multiplicity = name. Contains one or more key elements.
‘one’
source type = The child source for the relationship. Must have a Yes.
‘child’ name attribute, which corresponds to the table
multiplicity = name. Contains one or more key elements.
‘many’
Elements in “key”
Element Name Description Required
source The parent source for the relationship. Must have a Yes.
type='parent’ name attribute, which corresponds to the table
multiplicity = ngme. Contains one or more key elements,
one containing one or more column elements. Each
column has an order attribute, and names a table
column,
source type = Similar to the parent source, but for the child Yes.
‘child’ source. Each column is matched between the
multiplicity = arentand child, to form the relationship.
‘many’

Condition elements must contain an expression element. Otherwise a condition will have a
comparison operator attribute, and multiple expressions. Possible comparison operators are
“AND” and “OR. The expressions are compared using the comparison operator. A
condition element may optionally contain another nested condition element.

Attributes of “expression”

Parameter Description Required

p Tells whether the expression element contains a Yes.
parameter or not. Possible values are “y” or “n”.

BrightIntegrator User’s Manual Page 73 of 110
www.brightsoft.com.au Version 4.0.0

Elements in “expression”

Element Name Description Required

table-name Names the table that contains the value Yes.

column-name Names the table column that contains the value Yes.
op Operator for the expression. Possible values are It, Yes.

le, eq, ne, ge, gt, like.
parameter Must contain a name attribute, and may containan | Yes, but only if

optional desc (description) element. this expression
contains a
parameter.
value Must have a type attribute. The content is the value | Yes, but only if
to be used in conjunction with the expression this expression
operator. does not contain a
parameter.

Elements in “field”

Element Name Description Required
table-name Names the table that contains the field Yes.
column-name Names the table column for the field Yes.
alias Optional alias for this field. Yes, but only if
this expression
contains a
function.
function This element contains the SQL aggregate functions No.

to be applied to the column. Supported values are
count, sum, avg, min, or max.

orderby This element contains the distinct clause to be No, but only used
applied for ordering the query. Allowed values are | for orderfields.
yes and no.

8.5.1 User Defined Queries

In order to support JavaScript based user defined sync points on the server, we need to be
able specify a special query type that we can use to send user defined payloads to the scripts
executed on the server side. In many cases standard queries (XML query) or advanced SQL
queries (basically a SQL SELECT statement) will be not adequate or will be restrictive in
terms of specifying what it is that the remote device is trying to read from the script.

To provide maximum flexibility we will introduce a new query type where the user can
define the format and the content of the query to be dispatched to server. This query data will
be referred as “payload”.

BrightIntegrator User’s Manual Page 74 of 110
www.brightsoft.com.au Version 4.0.0

8.5.1.1 Query Spec XML Changes

<query name="MyQuery" version="5">
<tables>...</tables>
<is-user-query>yes</is-user-query>
<user-query>
<payload name="Payload”><! [CDATA[my query data]]></payload>
</user-query>
<output-fields>..</output-fields>
</query>

is-user-query : Defines if the query is of a user query type or not.

user-query : This element contains the user query specific configuration elements.

payload : This defines the query payload together with the query parameter name.
output-fields : This is the existing element to contain the output fields from the parent table.

tables : This is the existing element to contain the name of the tables involved in the query.

BrightIntegrator User’s Manual Page 75 of 110
www.brightsoft.com.au Version 4.0.0

8.6 Admin Element

Brightintegrator configuration file allows you to configure system administration related
options such as configuring the details of an email account to which an email is to be sent
informing the sys admin of the result of a particular job execution. The following sections
outline the available option in the admin section defined by the admin element in the
configuration file.

<integrator version="2.0">
<admin>
<email-notification>
<on-success>yes</on-success>
<on-failure>yes</on-failure>
<server>205.214.83.216</server>
<port>25</port>
<from>admin@mycompany.com.au</from>
<to>admin@mycompany.com.au</to>
<subject>BrightIntegrator job result</subject>
<attach-file>c:/bi2/log/integrator.log</attach-file>
</email-notification>
</admin>
<jobs version="2.0"> e </jobs>
<tasks version='2.0"'> e </tasks>
<queries> .. </queries>
<data-sets> ce </data-sets>
<mappings version = "2.0"> 500 </mappings>
</integrator>

Elements in “email-notification”

Element Name Description Required

on-success If set to “yes” an email message will be sent if the Yes
job(s) are executed successfully (Valid values are
GCyeS7’ Or “n07’

on-failure If set to “yes” an email message will be sent if Yes
Brightintegrator failed to execute job(s) (Valid
values are “yes” or “no”)

server Email server address Yes
port Email server port number. This is set to default Port No
“25”. Does not need to be specified.
from Email address of the person who is sending the Yes
email.
to Email address of the person to which the email is to Yes
be sent.
subject Subject of the email Yes
attach-file Name of the file that can be sent with the email. No

This is optional.

BrightIntegrator User’s Manual Page 76 of 110
www.brightsoft.com.au Version 4.0.0

8.7 Push Module

The Push Module configuration file defines the push mechanism to be executed by
Brightintegrator. This identifies the Publications, Subscriptions, Dispatchers, and Notifier
elements of the Push Module. This also states what escalation actions are to be executed if a
message fails to be sent etc.

The following is a sample Push Module configuration file. This file is referenced by the Push

data-set.
<push-task version="1.0" def-version="1">
<publications>
<publication name="OrderItems" set="OrderItem">
<field>0ID</field>
</publication>
</publications>
<subscriptions>
<subscription publication="OrderItems">
<subscriber type="file" file="/bi3/data/oidmap.csv">
<subscriber-values>
<value name="0OID" type="int">1</value>
</subscriber-values>
<dispatcher-values dispatcher="FileDispatcher">
<value name="OrderItem.file-name" type="string">2</value>
</dispatcher-values>
</subscriber>
</subscription>
</subscriptions>

<dispatchers>
<dispatcher name="FileDispatcher" destination="PushFile">
<attribs/>
<escalations>
<escalation execute="on-failure">
<destination name="EscalationFile">
<value name="OrderItem.file-name" type="string">C:\OnFail.txt</value>
</destination>
<condition/>
<write-values/>
</escalation>
</escalations>
</dispatcher>
</dispatchers>

<notifier>
<attribs>
<value name="max-retries" type="int">10</value>
<value name="retry-interval" type="int">300</value>
<value name="delete-failed-jobs" type="boolean">no</value>
</attribs>
<message-store type="database">
<value name="url"
type="string">jdbc:microsoft:sqglserver://bohr:1433; DatabaseName=bstest; Sele
ctMethod=cursor</value>
<value name="jdbc-driver"
type="string">com.microsoft.jdbc.sglserver.SQLServerDriver</value>
<value name="username" type="string">bstest</value>
<value name="password" type="string">bstest</value>
</message-store>
</notifier>
</push-task>

BrightIntegrator User’s Manual Page 77 of 110
www.brightsoft.com.au Version 4.0.0

Elements in “push-task”

Element Name Description Required
publications States the publications available to be used by the Yes
subscribers. Consist of more than one <publication>
elements.
subscriptions |List the subsciption elements which defines the Yes
destination of the data to be sent via the dispatchers.
dispatchers Defines the attributes and escalation actions of the Yes
dispatcher elements.
Notifier Describes the notifier attributes and message store Yes
element.

The publications element consist of one or more publication elements.

Elements in “publications”

Element Name Description Required
publication Yes

Attributes of “publication”

Element Name Description Required
name Defines the name of the publication which will be Yes
used by the subscription element.
set Specifies the set used by the publication. This will Yes

be the basis for the task data.

The publication element consist of one or more field elements. The field element references
the data from the set specified in the publication element. The publication will then filter the
set data based on the field element.

Elements in “publication”

Element Name Description Required
field The field name to be used to filter the set data. Yes

The subscriptions element consist of one or more subscription elements.

Elements in “subscriptions”

Element Name Description Required

subsciption | Defines the published data to be used by the Yes
subscription.

BrightIntegrator User’s Manual Page 78 of 110
www.brightsoft.com.au Version 4.0.0

Attributes of “subscription”

Element Name Description Required
publication The name of the publication that is Yes
referenced by the subscription.
default-dispatcher The name of the default dispatcher. No

The subscription element consist of one or more subscriber elements.

Elements in “subscription”

Element Name Description Required

subsciber Defines the subcriber type. Can be based Yes
from a file that contains the list of
subscriber details or based on a constant
value.

Attributes of “subscriber”
Element Name Description Required

type Type of the subscriber. Type can be a constant — Yes
which is the actual data values. It can also be a file —
the values are indexing the file columns.

file The name of the subscriber file. Yes, if type is
file.

The subscriber element consist of one or more subscriber-values elements.

Elements in “subscriber”

Element Name Description Required
subsciber-value Defines the value of the data to be passed Yes
to the named fields in the referenced
publication.
dispatcher-values Defines the value of the attributes to be Yes
passed to the dispatcher elements for each
subscriber.

Attributes of “dispatcher-values”

Element Name Description Required
dispatcher The name of the dispatcher to be Yes, if no default-dispatcher
used by the subscriber. defined in the subscription
element.
BrightIntegrator User’s Manual Page 79 of 110

www.brightsoft.com.au Version 4.0.0

The subscriber-values element consist of one or more value elements which defines the data
to be passed to the publication.

The dispatcher-values element consist of one or more value elements which defines the
values to be passed to the attributes of the dispatcher. This is destination accessor specific.
For example, if you are using a File accessor as a destination, you can change the value of the
file-name for each subscriber. The following table details the dispatcher attributes that can be
overwritten.

Destination Attribute

File SetName.file-name , append
BrightForms server, port

BrightServer url, username, password
Email host, port, from, to, subject

The dispatchers element consist of one or more dispatcher elements.

Elements in “dispatchers”

Element Name Description Required
dispatcher Defines the dispatcher name and destination Yes

The dispatchers element consist of one or more dispatcher elements.

Elements in “dispatcher”

Element Name Description Required
attribs Defines the attribute values to be passed to the No
dispatcher accessor.
escalations List the escalations to be executed when sending the No

message to its destination

Attributes of “dispatcher”

Element Name Description Required
name The name of the dispatcher referenced by the Yes
subscriber elements.
destination Name of the destination data-set. Yes
BrightIntegrator User’s Manual Page 80 of 110

www.brightsoft.com.au Version 4.0.0

Elements in “escalations”

Element Name Description Required

escalation Defines the escalation actions to be executed when No
sending the task data to the subscribers.

The escalations element consist of one or more escalation elements.

Elements in “escalation”

Element Name Description Required
destination The destination name to be used by the escalation Yes
method.
condition The condition or conditions for the escalation No
method.
write-values Values to overwrite the set data fields. Can be used No

as a feedback mechanism to change a field
depending on the status of the message sent.

If a write-value is not defined with the escalation action the values from the task data will be
used for the write data. You can create a feedback mechanism within Brighintegrator to
change the value of the status of a record. For example, change the status of a JOB record if it
was not sent successfully to the client devices.

Attributes of “escalation”

Element Name Description Required

execute Defines when the escalation method will be Yes
executed. Possible values are: on-success, on-
failure and always.

The “on-failure” escalation action will be executed if and only if the message status was
failed. This means that a message is considered a failed message if the message was still
unsuccesfully sent after the configured retries.

The attribs, destination, condition and write-values elements consists of one or more value
element that defines the value to be passed to the mentioned elements. This element is
discussed at the end of this section.

The notifier element contains the attributes for the notifier and the message store. The
following are the attributes that you can change for the notifier element:

v <max-retries> - this is the maximum number that BrightIntegrator will retry sending
a failed message.

v’ <retry-interval> - this is the time the message will be put into the “Idle” state. When
the idle time elapses, Brightintegrator will try resending the message
depending on the maximum number of retries.

v <delete-failed-jobs> - a flag to automatically delete the failed jobs record from the
message store.

BrightIntegrator User’s Manual Page 81 of 110
www.brightsoft.com.au Version 4.0.0

The message store values are details of where the database of the message store is located,
the following are the values that need to be specified:

v url

v' jdbc-driver

v’ username

v’ password

Elements in “notifier”

Element Name Description Required
attribs This defines the attributes of the notifier element No
such as maximum retries and idle interval time.
message-store Describes the message store values used by the No
notifier.

Attributes of “message-store”

Element Name Description Required

type Specifies the type of the message store. Type can No
either be “database” or “memory”. By default
message-store will be created in memory.
Note: If using a “memory” message-store when the computer system restarts, the message
store will be reset.

The value element defines the name and type of the value to be passed to the following
elements:
e Attribs
Message-store
Subscriber-values
Dispatcher-values
Destination of the escalation element
Condition of the escalation element
Write-values

The “value” element

Element Name Description Required
value Defines the value name of the attribute. Yes

Attributes of “value”

Element Name Description Required
name Defines the name of the value to be used by the Yes
elements of the push module.
type Specifies the data type. Yes
BrightIntegrator User’s Manual Page 82 of 110

www.brightsoft.com.au Version 4.0.0

8.8 Scheduler Component

The <schedules> element defines the scheduler component of the job processor. The
scheduler can be based on a timer interval or a cron-trigger. See Appendix B for more details
on cron-triggers and cron-expressions.

<schedules>
<schedule name ="SimpleSchedule" type="simple">
<value name="interval" type="int">300</value>
</schedule>
<schedule name ="CronSchedule" type="cron">
<value name="cron-expression" type="string">0 0/30 8-17 26,27 * 2</value>
</schedule>
</schedules>

Elements in “schedules”

Element Name Description Required

schedule List the name of the scheduler components available Yes
in the configuration file.

Attributes of “schedule”

Element Name Description Required
name The name of the scheduler component to be Yes
executed.
type Defines the scheduler type. Can either be “simple” Yes
or “cron”.

Elements in “schedule”

Element Name Description Required
value Defines the value name of the scheduler type. Yes

Attributes of “value”

Element Name Description Required

name Defines the name of the value of the scheduler Yes
component. Can either be an “interval” or a “cron-
expression”.

type Specifies the type of the value to be passed to the Yes
scheduler component. If using “interval” should
pass an integer type. If using “cron-expression”, the
type should be string.

BrightIntegrator User’s Manual Page 83 of 110
www.brightsoft.com.au Version 4.0.0

8.9 Data Value Formatting
Formatting can be used in files for fields that represent Boolean, numerical or date values.

Booleans can be formatted in several ways. All formats are case-insensitive. Booleans are
recognised as “true” and “false”, “yes” and “no”, “0” and “1”. Alternatively, a customised
format may be specified in the form “true-identifier/false-identifier”.

8.9.1 Number Formatting
Numbers can be formatted using the following pattern symbols.

Symbol Location Localized? Meaning
0 Number Yes Digit
Number Yes Digit, zero shows as absent
Number Yes Decimal separator or monetary decimal
separator
- Number Yes Minus sign
, Number Yes Grouping separator
E Number Yes Separates mantissa and exponent in scientific
notation. Need not be quoted in prefix or
suffix.
; Sub pattern Yes Separates positive and negative sub patterns
boundary
s Prefix or suffix Yes Multiply by 100 and show as percentage
\u2030 Prefix or suffix Yes Multiply by 1000 and show as per mille
n (\uooa4) Prefix or suffix No Currency sign, replaced by currency symbol.

If doubled, replaced by international
currency symbol. If present in a pattern, the
monetary decimal separator is used instead
of the decimal separator.

Prefix or suffix No Used to quote special characters in a prefix
or suffix, for example, "' #' 4" formats 123
to "#123". To create a single quote itself, use
two inarow: "# o''clock".

For example, to specify leading zeroes to pad out an integer to four digits, the pattern would
be “0000”. Further, to specify exactly two decimal places, when given a double value, the
pattern would be “#.00”. To specify two decimal places at the most, the pattern would be
“HHHE.

BrightIntegrator User’s Manual Page 84 of 110
www.brightsoft.com.au Version 4.0.0

More Examples

The following examples show how number patterns are interpreted for the given

number: -123.45.

Number Pattern
#.00
00000.00

%

8.9.1.1 Number Alignment

Result
-123.45
-00123.45
-12345

In addition, the pattern may be prefixed with an underscore. This will cause the number to

be right-aligned, within its field.

8.9.2 Date Formatting

Dates can be formatted using the following pattern symbols.

Date or Time
Letter
Component

Era designator

Year

Month in year

Week in year

Week in month

Day in year

Day in month

Day of week in month
Day in week

Am/pm marker

Hour in day (0-23)
Hour in day (1-24)
Hour in am/pm (0-11)
Hour in am/pm (1-12)
Minute in hour
Second in minute
Millisecond

H M o g = 2 XK ®

5 50 X ~ T 0

0

0n

Time zone

N

7 Time zone

BrightIntegrator User’s Manual
www.brightsoft.com.au

Presentation

Text
Year
Month
Number
Number
Number
Number
Number
Text
Text
Number
Number
Number
Number
Number
Number
Number

General time zone

RFC 822 time
zone

Examples

AD

1996, 96
July, Jul; 07
27

2

189

10

2
Tuesday, Tue
PM

0

24

0

12

30

55

978

Pacific Standard Time, PST, GMT-
08:00

-0800

Page 85 of 110
Version 4.0.0

http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#text#text
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#year#year
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#month#month
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#number#number
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#number#number
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#number#number
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#number#number
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#number#number
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#text#text
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#text#text
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#number#number
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#number#number
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#number#number
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#number#number
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#number#number
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#number#number
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#number#number
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#timezone#timezone
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#rfc822timezone#rfc822timezone
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html#rfc822timezone#rfc822timezone

For example, to specify a short date with four digit year, the pattern would be “dd-MM-
yyyy”. Further, to specify the 24 hour time, long date and four digit year, the pattern would
be “HH:mm:ss EEE d MMM yyyy”.

More Examples

The following examples show how date and time patterns are interpreted for the given
date and time: 2001-07-04 12:08.

Date and Time Pattern Result

h:mm 12:08

ddMMyy 040704
yYyyyy.MMMMM. dd hh:mm 02004.July.04 12:08

8.10 Logging Configuration

BrightIntegrator™ uses the popular Log4J framework for logging runtime information to the
console, as well as to log files. The configuration file is log4j.xml, located in the conf
directory. The log file “integrator.log” is located in the log directory.

There are five levels of logging information. They are DEBUG, INFO, WARN, ERROR,
and FATAL. The DEBUG Level designates fine-grained informational events that are most
useful to debug an application. The INFO level designates informational messages that
highlight the progress of the application at coarse-grained level. The WARN level designates
potentially harmful situations. The ERROR level designates error events that might still
allow the application to continue running. The FATAL level designates very severe error
events that will presumably lead the application to abort.

In order to change the level of logging, the user must edit the log4j.xml configuration file.
Locate the “root” element, and in it, another element called “priority”. The “value”
attribute sets the global level for logging. By default, this is set to INFO.

Note: Log4J is configured to send logging information to the console, and to files in the log
directory. However, it applies a threshold on the console at the INFO level. This means that,
even if DEBUG is configured, no DEBUG information will appear on the console. DEBUG
information will appear in the log files as expected.

For more configuration information and examples see the Jakarta Log4j website:
http://jakarta.apache.org/log4j

BrightIntegrator User’s Manual Page 86 of 110
www.brightsoft.com.au Version 4.0.0

8.11 Scripts

User defined JavaScripts are defined using the “scripts” element.

<scripts>
<script name="TestScript" type="file">C:\temp\MyScript.js</script>

</scripts>

Attributes of “script”

Attribute Description Required
Name Name of the script Yes.
Type Type of script entry. No

“file” if the script is kept in an external file. Set always to “file”. The (default
content of the <script> element contains the name of the physical file. “file”)

(Note: “embedded” if the script is embedded the configuration file.
This type is used only by BrightBuilder).

BrightIntegrator User’s Manual Page 87 of 110
www.brightsoft.com.au Version 4.0.0

9.0 Last Run file

The Job Processor keeps track of the successful tasks executed in the Last Run file. This file
is named last-run.xml, and is by default located in the conf directory beneath where
BrightIntegrator™ is run. The Last Run file is also used to store task-related state data as
well.

Note that the location and name of the last run file can be set by using the [-l|--lastrun
LASTRUN_FILE_NAME] command line option when running Brightintegrator.

If BrightIntegrator™ experiences an error during a job, the next time it runs, the job will be
resumed from the task that had not been successfully run. (This behaviour can be overridden
using the —n command line option) This is achieved by the Job Processor writing to the Last
Run file each time that a task was not completed. Once a job was run successfully, the Last
Run for that job will be cleared.

Important: Ensure that each job has a different name for each configuration.

The Last Run file is also used for storing timestamps that are used to reading data from a
BrightServer™ instance. Each time data is successfully read from BrightServer™, the
timestamp associated with the read, is stored in the Last Run file. Then when the next read
occurs, the timestamp in the Last Run file is retrieved and used as part of the read. In this
way, only incremental data is returned by the read.

An example of the XML layout for the Last Run file is given below.

<lastrun version="2.0">
<last-success>
<job name="ProduceDifferenceFile">0</job>
<job name="ExportBarCodes">0</job>
<job name="EnterNewOrders">0</job>
</last-success>
<data-sets>
<data-set name="ServerBarCodeTable">
<value name="time-stamp">1104822837289</value>
</data-set>
<data-set name="BrightServerDebtorTable">
<value name="time-stamp">0</value>
</data-set>
<data-set name="ServerTablel">
<value name="time-stamp">0</value>
</data-set>
</data-sets>
</lastrun>

BrightIntegrator User’s Manual Page 88 of 110
www.brightsoft.com.au Version 4.0.0

10.0 How Do I ?

10.1 JDBC and BrightServer import difference task

How do | create a task to get the difference between a JDBC and BrightServer source and
save it back to BrightServer?

The task to generate the difference data set between the JDBC and BrightServer is shown
below:

<task name="DiffImportBarCodes" >
<source>ServerBarCodeTable</source>
<old-source>BSBarcodeTable</old-source>
<destination>BSBarcodeTable</destination>
<description>

<! [CDATA[Calculate the difference, and save to BrightServer]]>

</description>

</task>

The “ServerBarCodeTable” is defined as a JDBC data set and the BSBarcodeTable is defined
as a BrightServer data set in the data-sets elements of the configuration file.

10.2 Exporting joined tables

How do | export customer and customer orders from BrightServer in one task but using two
destination files?

Define the query with joined tables and simply specify the parent and child tables, and the
relationships. See example below for CUST and CUST_ORDERS tables:

<queries>
<gquery name="CustCOrdersQuery">
<tables>
<table type="parent">CUST</table>
<table type="child">CUST ORDERS</table>
</tables>
<relationships>
<relationship>
<source name="CUST" type="parent" multiplicity="one">
<key>
<column order="1">CUST NO</column>
<column order="2">DEL CODE</column>
</key>
</source>
<source name="CUST ORDERS" type="child"
multiplicity="many">
<key>
<column order="1">CUST NO</column>
<column order="2">DEL CODE</column>
</key>
</source>
</relationship>
</relationships>
<condition />

BrightIntegrator User’s Manual Page 89 of 110
www.brightsoft.com.au Version 4.0.0

<outputfields/>
<orderfields/>
<distinct-records>no</distinct-records>
<online>no</online>
<row-lock>no</row-lock>
</query>
</queries>

Then define the output files data-set as follows:

<data-set name="OutFiles" type="File" >
<sets>
<set name="Cust">
<file-name>c:/bi2/data/CUST.TXT</file-name>
<mapping>CustCSVMapping</mapping>
</set>
<set name="CustOrders">
<file-name>c:/bi2/data/CUST_ORDERS.TXT</file-name>
<mapping>CustOrdersCSVMapping</mapping>
</set>
</sets>
</data-set>

BrightIntegrator User’s Manual Page 90 of 110
www.brightsoft.com.au Version 4.0.0

Appendix A — API (Pronto, Web Service) Configuration File

A1.0 Introduction

The API style data-set types (Pronto and Web Services) have their own dedicated XML
configuration file. This file configures specific API calls to be made when data is received
by the data-set. In simple terms this XML configuration file describes how the data needs to
be processed by the external API provider. In the Pronto case, this is the Pronto Integration
Engine (PIE), and in the Web Services case, this is the web server.

Both Pronto and Web Services data sets have in common the APl module, which can handle
consuming group data and submits it to the API server. Hence they also share the API
configuration file.

The API configuration file defines which API to call together with the parameter details. The
source of API parameters could be constant values (type constant), values from the sets read
by Brightintegrator from other sources (type bi), or the results of the API calls (type api). The
result parameters of each API call is cached by Brightintegrator for subsequent API calls;
however, Brightintegrator will initially remove all the result parameters that the API call is
supposed to return, thereby guaranteeing the correctness of the result parameter values that
the subsequent API call rely on.

The document root element is api-task (also pronto-task is accepted for backwards
compatibility). The top-level elements of the XML file are pre-task, group, post-task, and
apis. An example of the each top-level element will be explained in the following sections.

API calls can be configured to be made at the following times:

Before the task begins (pre-task)

Before each data group (pre-group)

For each record in a data group (group / set)
After each data group (post-group)

After the task ends (post-task)

Co00D

BrightIntegrator User’s Manual Page 91 of 110
www.brightsoft.com.au Version 4.0.0

Al.1 “pre-task” element

This optional element defines an API call to be made before the task begins. This is useful
for initialisation purposes such as logging, creating connections or setting a state for the
upcoming task. The value given for the api attribute should be defined in the apis element.
The following example could be used to login before processing the group data,

<pre-task api="login"/>

Attributes of “pre-task”

Attribute Description Required

api The API method to be called before the task begins. Yes
The given value should refer to a corresponding entry
in the apis element.

Important: The parameters of the pre-task API call should not reference bi value types as
they are not available in this scope.

Al1.2 “group” element

The group element forms the central part of the configuration file. A data group is a
collection of records. Each record is associated to the group by pre-defined relationships.
See section 2.3 Grouping Data for more details about grouping. An example of a data group
would be a sales order, containing a single ORDER_HEADER record, along with multiple
ORDER_ITEM records. The ORDER_HEADER record is said to be in the main set, and the
ORDER_ITEM records would be members of a second set, in the group.

The core of the group element is the sets element, which defines an API call for each
different set. So for the ORDER_HEADER main set, we might make the API call
“createOrder”, and for the ORDER ITEM second set, we might make the call “createLine”.

And then the group element would be,

<group>
<sets>
<set name="OrderHeader" api="createOrder"/>
<set name="OrderItem" api="createlLine"/>
</sets>
</group>

The API calls are made in the order of appearance of the set elements.

Optional elements are pre-group and post-group. These elements declare apis that can be
called before and after each group. To extend the above example, we may choose to use the
pre-group element to log onto the server and then post-group element to submit the order so
that we can complete the order for the group. Then the XML would become,

<group>
<pre-group api="login"/>
<sets>
<set name="OrderHeader" api="createOrder"/>
BrightIntegrator User’s Manual Page 92 of 110

www.brightsoft.com.au Version 4.0.0

<set name="OrderItem" api="createLine"/>
</sets>
<post-group api="submitOrder”/>
</group>

Note that pre-group and post group APIs will have access to the header record in the first set
(main set) defined. In the above example that would be the order header record.

Also note that if a specified bi value does not exist in the set being submitted, then
Brightintegrator will search the value in the header record. By doing that, the user would not
need to duplicate fields already in the header (main set) for the child sets.

Attributes of “group”

Attributes Description Required

resend-failed Defines if the failed group has to be resent back to No.
the server or not. If set to “false”, the failed groups
will not be resent. If the attribute is not set, then the
failed groups will be sent to the server. Default
behaviour is to resend all failed groups.

Elements in “group”

Element Name Description Required

pre-group The API method to be called before the group is No.
processed. The value given for the api attribute
should be defined in the apis element.

sets Defines which API to be called for each set in the Yes.
group. It contains one or more set elements.
post-group The API method to be called after the group is No.

processed. The value given for the api attribute
should be defined in the apis element.

Attributes of “set”

Attributes Description Required

name The name of the set. This name references the set Yes.
name that was given in the original source data-set
from where the data was read.

api The API method to be called for each record in the Yes.
set. The value given for the api attribute should be
defined in the apis element.

BrightIntegrator User’s Manual Page 93 of 110
www.brightsoft.com.au Version 4.0.0

Al.3 “post-task” element

This optional element defines an API call to be made after the task ends. This is useful for
tearing down connections or restoring the state after the task. The value given for the api
attribute should be defined in the apis element. The following example could be used to
login before processing the group data,

<post-task api="logoff"/>

Attributes of “post-task”

Attribute Description Required

api The API method to be called after the task ends. The Yes
given value should refer to a corresponding entry in
the apis element.

A1.4 “apis” element

The apis element defines the API calls that are declared in the other elements. The apis
element contains one or more api elements.

Each api element has a name attribute, which is used as its reference throughout this file.
The external-name element (pronto-name is also accepted for backwards compatibility)
defines the actual APl method name as the server knows it. If an error is returned from the
server, then there is an optional on-error attribute which can be used to make another API
call. Any errors that occur from on-error calls are ignored, so that the potential for infinite
loops is avoided.

The api element can also optionally write return fields to a csv file as a form of feedback
mechanism from the connection.

<api name="createOrder" on-error="">
<on-error>
<!—on-error details -->
</on-error>
<external-name>create-so</external-name>
<params>
<!—params details -->
</params>
<results>
<!—results details -->
</results>
<file-feedbacks>
<!—file-feedbacks details -->
</file-feedbacks>
</api>

BrightIntegrator User’s Manual Page 94 of 110
www.brightsoft.com.au Version 4.0.0

There is also an optional on-error element that allows Brightintegrator to define multiple on-
error API calls. It has the following format:

<on-error>
<api>CancelOrder</api>
<api>SendEmail</api>
</on-error>

If there is a single on-error API that needs to be called, the “on-error” attribute can be used.
On the other hand, you do not need to use the “on-error” attribute, since the on-error element
can also be used to define a single on-error API. If both on-errors are used, Brightintegrator
will call the on-error API specified by the “on-error” attribute and all the on-error APIs
defined by the on-error element. As an example,

<api name='"createOrder" on-error="CancelOrder">
<on-error>
<api>SendEmail</api>
</on-error>

</api>
is equal to:
<api name="createOrder" on-error="">
<on-error>
<api>CancelOrder</api>
<api>SendEmail</api>

</on-error>

</api>

Attributes of “api”

Attributes Description Required
name The name of the api. This name references this api Yes
throughout the rest of the file.
on-error The API method to be called if an error occurs No

during the call of this api.

Elements in “api”

Element Name Description Required
on-error Allows multiple on-error API names to be defined. No
external-name The actual APl method name according to the Yes
server.
params Defines the input parameters to give to the API call. No
results Defines the output results from the API call. No
BrightIntegrator User’s Manual Page 95 of 110

www.brightsoft.com.au Version 4.0.0

The params element contains one or more param elements. Each param element
corresponds to an input parameter for the API call. An input parameter must be one of three
types, constant — an explicitly defined fixed value, bi — a value taken from a named field in
the input set data, or api — a value taken from a named result of a previous API call.

<params>
<param name="lp-auth-user-number">
<src-type>api</src-type>
<src-name>lr-user-number</src-name>
</param>
<param name="lp-auth-accountcode">
<src-type>constant</src-type>
<value>123456</value>
</param>
</params>

Attributes of “param”

Attributes Description Required

name The name of the input parameter, according to the Yes.
API call.

Elements in “param”

Element Name Description Required

src-type Valid values are: constant, api, bi, systemtime, set, Yes.
taskdata

If the src-type is systemtime, Brightintegrator will
provide the current system date-time at the time of
API call.

If the src-type is set or taskdata, Brightintegrator
will provide the XML string in the Bright XML
format, for either just the set or the whole taskdata,
respectively. See Appendix F for details.

src-name If src-type is bi: then src-name is the name of a Only if src-type is
field in the input data set. api or bi.
If src-type is api: then src-name is the name of a
result from a previous API call.

format The format of the field. See section 8.9 Data Value No
Formatting
value A fixed value. Only if src-type is
constant.

The results element contains one or more result elements. One result element is required to
be defined for each output that we wish to inspect the value of. Each result element contains
one or more case elements, which specify value comparisons. The result value is compared
with each case down the list until the first match is found. Then the instructions attached to

BrightIntegrator User’s Manual Page 96 of 110
www.brightsoft.com.au Version 4.0.0

the matching case are followed. A case may specify that the on-error API call is to be made.
Following this the case command is carried out.

Possible case commands are:

"abort-task": The current task is aborted and any further processing is cancelled.

"exit-task™: The current task processing is cancelled, but any post-processing is still carried
out.

"abort-group™: The current group processing is aborted, and its post-processing is cancelled,
and the next group will be processed.

"exit-group™: The current group processing is cancelled, but its post-processing is still
carried out, and the next group will be processed.

"continue™: Processing continues uninterrupted, but the on-error action is invoked. This
command is used as a placeholder if we just want the on-error action to occur.

"repeat": Processing continues uninterrupted, and the current API call will be invoked again.
This is used for API calls which can return data iteratively.

Possible case operators are:

Operator | Meaning
eq equal to
ne not equal to
It less than
le less than or equal to
gt greater than
ge greater than or equal to

For instance, say the result value returned from the API call is -1. Then a case with
operator="eq” and code="0" will not match, because -1 is not equal to 0. A case with
operator="1t” and code="0" will match, because -1 is less than 0.

<results>
<result name="lr-result-status" type="int">
<case command="abort-task" run-on-error="no">
<operator>ne</operator>
<code>0</code>
</case>
</result>
</results>

Attributes of “result”

Attributes Description Required
name The name of the output result, according to the API. Yes.
type The data type of the result. Internal data types are Yes.

accepted.

The result element contains one or more case elements.

BrightIntegrator User’s Manual Page 97 of 110
www.brightsoft.com.au Version 4.0.0

Attributes of “case”

Attributes Description Required
run-on-error Setto “yes” or “true” if the on-error api is to be No.
called in the case matches. This will occur before
command.
command The command to be carried out if the case matches. Yes.

Possible values are: abort-task, exit-task, abort-
group, exit-group, continue

Elements in “case”

Element Name Description Required
operator The comparison operator. Possible values are: eq, Yes.
It, le, gt, ge, ne.
code A fixed value to be used as a part of the No.
comparison.

The file-feedbacks element is an optional element that allows Brightintegrator to write the
return output from Pronto to multiple feedback files per API call. The file-feedbacks element
contains one or more file-feedback elements. One file-feedback element is required to be
defined for each output file.

<file-feedbacks>
<file-feedback name="c:\bi2\Feedback.txt" type="csv" append="no">
<file-field>
<src-type>bi</src-type>
<src-name>0ID</src-name>
</file-field>
<file-field>
<src-type>api</src-type>
<src-name>lr-sales-order-number</src-name>
</file-field>
<file-field>
<src-type>constant</src-type>
<value>hello</wvalue>
</file-field>
<file-field>
<src-type>bi</src-type>
<src-name>dtOrdered</src-name>
<format>dd-MM-yyyy</format>
</file-field>
</file-feedback>
</file-feedbacks>

Elements in “file-feedbacks”

Element Name Description Required
file-feedback Defines the output file. Yes
BrightIntegrator User’s Manual Page 98 of 110

www.brightsoft.com.au Version 4.0.0

Attributes of “file-feedback”

Attributes

name

type

append

on-success

on-failure

Description
The name of the output file.

The file type should always be a comma-separated
file type.

If set to yes, then when writing to this data-set,
information will be appended, if the file already
exists. Otherwise the file will be rewritten from the
beginning.

If set to yes, when the api is executed successfully,
the feedback-file will be written on. Otherwise the
feedback-file write operation will be ignored. If this
attribute does not exist in the configuration file,
Brightintegrator will still write to the feedback-file
on api success.

If set to yes, when the api fails the feedback-file will
be written on; otherwise the feedback-file write
operation will be ignored. If this attribute does not
exist in the configuration file, BrightIntegrator will
still write to the feedback-file on api failure.

Required
Yes
Yes

No; defaults to
GGyeS”

No; defaults to

[13 bh)

yes

No; defaults to

yes

The file-feedback element contains one or more file-field elements. One file-field element is
required to be defined for each return output that is required to write to the output file.

Elements in “file-field”

Element Name
src-type

src—name

format

value

Description
Valid values are: constant, api, bi, systemtime

If the src-type is systemtime, Brightintegrator will
return the current system date-time at the time of
writing the file field value to the feedback file.

If src-type is bi: then src-name is the name of a
field in the input data set.

If src-type is api: then src-name is the name of a
result from a previous API call.

The format of the field. See section 8.9 Data Value
Formatting

A user defined value to be written to the file instead
of the null value returned by the output result
source.

BrightIntegrator User’s Manual
www.brightsoft.com.au

Required
Yes.

Only if src-type
is api or bi.

No

Only if src-type
is constant.

Page 99 of 110
Version 4.0.0

Appendix B — Cron Expressions

This section explains what Cron and Cron expressions are. There is also a list of examples
that can be used within your scheduler component.

B1.0 Cron Definition

Cron is the name of program that enables unix users to execute commands or scripts (groups
of commands) automatically at a specified time/date. This allows users to create a
CronTrigger that can fire a job schedule that recurs based on calendar-like notations such as
“At 2:00 pm every last Friday of the month” or “Every 8:00am and 9:00am every Monday to
Friday, rather than specified intervals.

B1.1 Cron Expressions

A cron expression is a string comprised of 6 or 7 fields separated by white space which
defines your CronTrigger and describes individual details of the schedule. The 6 mandatory
and 1 optional fields are as follows:

Field Name Allowed Values Allowed Special Characters

Seconds 0-59 ,-*
Minutes 0-59 ,-*
Hours 0-23 ,-*

Day-of-month 1-31 ,-*?2/LWC
Month 1-12 or JAN_DEC - *

Day-of-week 1-7 or SUN-SAT ,-*?2/LCH#
Year (Optional) | Empty, 1970-2099 - *

Special Character Definition:

Special Description
Character
* (Asterisk)
Specifies all values. For example, “*” in the minute field means every minute.
? (Question mark)

This is used to specify “no specific value” in the day-of-month and day-of-week
fields. This is useful when you need to specify something in one of the two
fields but not the other.

- (Dash)
Defines a range. For example, “10-12” in the hour field means “the hours 10,11
and 12”.

: (Comma)
Used to specify additional values. For examples, "MON,WED,FRI" in the day-
of-week field means "the days Monday, Wednesday, and Friday".

/ (Forward slash)

Used to specify increments. For example "0/15" in the seconds field means "the
seconds 0, 15, 30, and 45". And "5/15" in the seconds field means "the seconds
5, 20, 35, and 50". You can also specify '/' after the *' character - in this case "*'

BrightIntegrator User’s Manual Page 100 of 110
www.brightsoft.com.au Version 4.0.0

is equivalent to having '0" before the '/'.

L This character is short-hand for "last™ and is only allowed for the day-of-month
and day-of-week fields. For example, the value "L" in the day-of-month field
means "the last day of the month" - day 31 for January, day 28 for February on
non-leap years. If used in the day-of-week field by itself, it simply means "7" or
"SAT". But if used in the day-of-week field after another value, it means "the
last xxx day of the month" - for example "6L" means "the last friday of the
month". When using the ‘L' option, it is important not to specify lists, or ranges
of values, as you'll get confusing results.

W This character is used to specify the weekday (Monday-Friday) nearest the
given day. It is only allowed for the day-of-month field. For example, if you
were to specify "15W" as the value for the day-of-month field, the meaning is:
"the nearest weekday to the 15th of the month". So if the 15th is a Saturday, the
trigger will fire on Friday the 14th. If the 15th is a Sunday, the trigger will fire
on Monday the 16th. If the 15th is a Tuesday, then it will fire on Tuesday the
15th. However if you specify "1W™ as the value for day-of-month, and the 1st is
a Saturday, the trigger will fire on Monday the 3rd, as it will not 'jump’ over the
boundary of a month's days. The "W' character can only be specified when the
day-of-month is a single day, not a range or list of days.

LW Translates to “last weekday of the month”. This combination can be used for the
ay-of-month field.
C This character is short-hand for "calendar” and is only allowed for the day-of-

month and day-of-week fields. This means values are calculated against the
associated calendar, if any. If no calendar is associated, then it is equivalent to
having an all-inclusive calendar. A value of "5C" in the day-of-month field
means "the first day included by the calendar on or after the 5th". A value of
"1C" in the day-of-week field means "the first day included by the calendar on
or after sunday".

This character is used to specify "the nth" XXX day of the month and is only
allowed for the day-of-week field. For example, the value of "6#3" in the day-
of-week field means the third Friday of the month (day 6 = Friday and "#3" =
the 3rd one in the month). Other examples: "2#1" = the first Monday of the
month and "4#5" = the fifth Wednesday of the month. Note that if you specify
"#5" and there is not 5 of the given day-of-week in the month, then no firing
will occur that month.

NOTE: The legal characters and the names of months and days of the week are not case
sensitive.

Here are some examples:

Expression Meaning

"0012** 7" Fire at 12pm (noon) every day

"015107? * *" Fire at 10:15am every day

"01510 * *?" Fire at 10:15am every day

"01510 * * 7 *" Fire at 10:15am every day

"0 15 10 * * ? 2005" Fire at 10:15am every day during the year 2005

"0 * 14 x Fire every minute starting at 2pm and ending at 2:59pm,
every day

BrightIntegrator User’s Manual Page 101 of 110

www.brightsoft.com.au Version 4.0.0

"00/514 ** 7" Fire every 5 minutes starting at 2pm and ending at 2:55pm,
every day

"00/514,18 * * 7" Fire every 5 minutes starting at 2pm and ending at 2:55pm,
AND fire every 5 minutes starting at 6pm and ending at
6:55pm, every day

"00-514 ** 7" Fire every minute starting at 2pm and ending at 2:05pm,

every day

"0 10,44 14 ? 3 WED"

Fire at 2:10pm and at 2:44pm every Wednesday in the month
of March.

"0 1510 ? * MON-FRI"

Fire at 10:15am every Monday, Tuesday, Wednesday,
Thursday and Friday

"01510 15 * ?" Fire at 10:15am on the 15th day of every month
"01510L*?" Fire at 10:15am on the last day of every month
"015107? *6L" Fire at 10:15am on the last Friday of every month
"01510? *6L" Fire at 10:15am on the last Friday of every month

"0 1510 ? * 6L 2002-2005"

Fire at 10:15am on every last friday of every month during
the years 2002, 2003, 2004 and 2005

"01510? * 6#3"

Fire at 10:15am on the third Friday of every month

"00/5*FFx

Fires every 5 minutes

"10 0/5 * * * 7"

Fires every 5 minutes, at 10 seconds after the minute (i.e.
10:00:10 am, 10:05:10 am, etc.).

"0 30 10-13 ? * WED,FRI"

Fires at 10:30, 11:30, 12:30, and 13:30, on every Wednesday
and Friday.

"0 0/30 8-9 5,20 * ?"

Fires every half hour between the hours of 8 am and 10 am
on the 5th and 20th of every month. Note that the trigger will
NOT fire at 10:00 am, just at 8:00, 8:30, 9:00 and 9:30.

Some scheduling requirements are too complicated to express with a single trigger - such as
"every 5 minutes between 9:00 am and 10:00 am, and every 20 minutes between 1:00 pm and
10:00 pm". The solution in this scenario is to simply create two triggers, and register both of
them to run the same job.

References:
http://quartz.sourceforge.net/javadoc/org/quartz/CronTrigger.html
http://www.opensymphony.com/quartz/wikidocs/TutorialLesson6.html

Page 102 of 110
Version 4.0.0

BrightIntegrator User’s Manual
www.brightsoft.com.au

http://quartz.sourceforge.net/javadoc/org/quartz/CronTrigger.html
http://www.opensymphony.com/quartz/wikidocs/TutorialLesson6.html

Appendix C — Running Brightintegrator as a Windows
Service

The “service” sub directory contains all the necessary files for installing BrightIntegrator as a
Windows service.

Important to note that Brightintegrator can only be installed and run as a Windows Service if
it has configured schedules to run continuously otherwise it will run the jobs configured once
and exit.

When running as a service, BrightIntegrator needs to point to a Brightintegrator XML
configuration file. This is configured in the "wrapper.conf" file located in the “service” sub
directory where the Brightintegrator is installed.

By default it refers to the Brightintegrator configuration file "config.xml" located in the
"conf" directory (i.e. ..\conf\config.xml).

If you are using a configuration file with the same name in the same location, then you do not
need to change the "wrapper.conf" file, and you can skip this step.

If you are using a configuration file that has a different name and/or is located somewhere
else, then go to Line 54 of the "wrapper.conf" file and edit the following line.

wrapper.app.parameter.2=-c ..\confi\config.xml
You can change this line as required. For instance to :

wrapper.app.parameter.2=-c ..\new_location\myconfigfile.xml

NOTE: When Brightintegrator is installed by the InstallShield based setup program, then a
Windows Service named “BrightIntegrator” will also be installed by the setup program. The
status of the Brightintegrator service installed is manual. After configuring wrapper.conf file
as described above, go to Services in the Windows Control Panel, and set the status to
“Automatic” and start the BrightIntegrator service to run Brightingerator.

In order to install the BrightIntegrator service manually, follow the following instructions.
To install BrightIntegrator as a Windows service, run

InstallB13Service.bat
To remove Brightintegrator as a Windows service, run

UninstallB13Service.bat

BrightIntegrator User’s Manual Page 103 of 110
www.brightsoft.com.au Version 4.0.0

Troubleshooting

To run BrightServer, you must configure necessary schedules for the jobs in question.
Otherwise Brightintegrator will run once and exit the service.

If you have problems when trying to start Brightintegrator as a Windows service, you can use
RunBI3.bat to run BrightIntegrator in a command line interface and check the errors and fix
the configuration issues that is preventing BrightIntegrator from running as a service.

You can also check out the "wrapper.log" file in the log directory (..\log).

BrightIntegrator User’s Manual Page 104 of 110
www.brightsoft.com.au Version 4.0.0

Appendix D — How to connect BrightServer via a secure
connection using “truststore”

In order to connect to BrightServer via a secure https port, the file shipped in the root
Brightintegrator directory must be copied to the home directory of the user running
BrightIntegrator. The name of the file is “truststore” and it contains the necessary digital
certificates signed by Bright Software in order to communicate with BrightServer via the
dedicated https port. This port is by default configured to be on port 8443.

For example, on Windows platform, if the account name of the user who is running
BrightIntegrator is jsmith, then the file truststore needs to be copied “C:\Documents and
Settings\jsmith”.

Important to note that if BrightIntegrator is configured to be running as a Windows service,
then the file truststore must be copied to the home directory of the user account which is
configured to run BrightIntegrator as the service. This can be configured via the ‘Log On’ tab
of the Brightintegrator service entry created.

BrightIntegrator User’s Manual Page 105 of 110
www.brightsoft.com.au Version 4.0.0

Appendix E — Formatting Objects

When an XML File Data Set is configured to apply an XSL transform, it is possible to also
configure BrightIntegrator to interpret the XSL output as a Formatting Object tree. In this
case, BrightIntegrator is able to render the resulting pages in a specified format, to the File
Data Set filename.

Output formats currently supported include PDF, PCL, PS, SVG, MIF, TXT, and printing
directly to the default printer.

Brightintegrator internally uses Apache FOP (Formatting Objects Processor)., which is a
partial implementation of the XSL-FO Version 1.0 W3C Recommendation.

Support for each of the XSL-FO standard objects and properties are detailed in FOP
Compliance on the Apache site, http://xmlgraphics.apache.org/fop/compliance.html.

BrightIntegrator User’s Manual Page 106 of 110
www.brightsoft.com.au Version 4.0.0

http://xmlgraphics.apache.org/fop/compliance.html

Appendix F — TaskData XML Object

The following XML format is used to represent a TaskData data object.

<data>
<table name="myTable">

<columns>
<col type="string">Name</col>
<col type="string">Address</col>
<col type="int">Age</col>
<col type="dateTime">dt birth</col>
<col type="float">salary</col>
<col type="double">target</col>
<col type="boolean">IsManager</col>

</columns>

<records>
<record>

<item>John</item>
<item>Sydney 2000</item>
<item>20</item>
<item>1984-12-11T11:20:00.000Z</item>
<item>20000.0</item>
<item>220000.0</item>
<item nil="true"/>

</record>

<record>
<item>Helga</item>
<item nil="true"/>
<item>18</item>
<item>1986-01-01T11:20:00.000z</item>
<item>18000.3</item>
<item>220000.0</item>
<item>false</item>

</record>

</records>

</table>

<table name=...>

</table>

<table name=...>

</table>

</data>

BrightIntegrator User’s Manual
www.brightsoft.com.au

Page 107 of 110
Version 4.0.0

Appendix G — Transformation Field Functions

The following table contains the available functions that can be used in the transformation
field mappings.

Function Description/Syntax

If Description: Evaluates a conditional expression, and returns one of
two possible values.
Syntax: If, v1, op, v2, true-value, false-value
where v1: Value to be used in the conditional expression
op: Comparison operator for the conditional expression
v2: Value to be used in the conditional expression
true-value: Returns this value if the condition is true
false-value: Returns this value if the condition is false
NOTE: The comparison operator must be one of the following:
“It”: less than.
“le”: less than or equal to.
“eq”: equal to.
“ne”’: not equal to.
“ge”: greater than or equal to.
“gt”: greater than.
Example:
If,$BVSFIELD1$BVS,eq,"str",”they_match","NO_MATCH"
If the value for FIELDI1 in this record is equal to “str” then return
the value “they match”, otherwise return the value “NO_MATCH”.
Example:
If, BVFIELD_DOUBLE$BVS, It, 333.0, 0.0, 1.1
If the value for FIELD_DOUBLE in this record is less than 333.0
then return the value 0.0, otherwise return the value 1.1.

Replace Description: Replaces all occurrences of one string with another in
the field.
Syntax: Replace,sl, s2
where sl : String to be searched
s1 : New string to replace all occurrences of sl
Example:
Replace,”abc”,”xxx”
If the field value were “abcdefabc”, after the execution of the
function, the field value would contain “xxxdefxxx”

ReplaceChar Description: Replaces all occurrences of a character in the field
with the string specified

Syntax: ReplaceChar,ddd, str

where ddd : Decimal value of the code of the Unicode character to

be
searched
str : New string to replace all occurrences of the character
Example:
BrightIntegrator User’s Manual Page 108 of 110

www.brightsoft.com.au Version 4.0.0

Replace,176,”DegreeC”
If the field value were “37 °”, after the execution of the function, the
field value would contain “37 DegreeC”

IMPORTANT NOTE : The character code must be the Unicode

character’s decimal value. Please use a Unicode Character Map to
find the decimal value that needs to be used.

ReplaceNonPrintable | Description: Replaces all occurrences of non-printable characters in

the field with the character specified.

Syntax: ReplaceNonPrintable, str

where str : Replacement character to be used to replace all non-
printable characters. (Note: that the replacement character is still
specified as a String, however only the first character will be used)
Example:

ReplaceNonPrintable,”?”

If the field value contains non-printable characters such as
“0x0002Normal0x0000Text0x008A”, after the execution of the
function, the field value would contain “?Normal?Text?”.

NOTE: The precise algorithm is to be replace all ASCII characters
less than 32, and all ASCII characters greater than 126, with the
exceptions of 0x0009 (tab), 0XO00A (LF) and 0x000D (CR).

Remove Description: Removes all occurrences of a string from the field.
Syntax : Remove,str
where str : Substring to be searched and removed
Example:
Remove,”$”
If the field value were “abcdef$”, after the execution of the function, the
field value would contain “abcdef”

RemoveChar Description: Removes all occurrences of a character from the field.
Syntax : RemoveChar,ddd
where ddd : Decimal value of the code of the Unicode character to be

removed from the field value

Example:
RemoveChar,176
If the field value were “37°”, after the execution of the function, the field
value would contain “37”
See the note above regarding the Unicode character value.

ToUpper Description: Converts all the characters in the field to uppercase
Syntax: ToUpper
Example:
ToUpper
If the field value were “hello world”, after the execution of the function,
the field value would contain “HELLO WORLD”

ToLower Description: Converts all the characters in the field to lowercase
Syntax: ToLower

BrightIntegrator User’s Manual Page 109 of 110

www.brightsoft.com.au Version 4.0.0

Example:

TolLower

If the field value were “HELLO WORLD?”, after the execution of the
function, the field value would contain “hello world”

Mid

Description: Extracts the number of characters specified starting from the
location requested
Syntax: Mid,start,count
where start : Starting position
count : Number of characters to be extracted
Example:
Mid,5,3
If the field value were “0123456789”, after the execution of the function,
the field value would contain “567”

Left

Description: Extracts the first (leftmost) number of characters specified
from the field

Syntax: Left,count

where count : Number of characters to be extracted

Example:

Left,3

If the field value were “0123456789”, after the execution of the function,
the field value would contain “012”

Right

Description: Extracts the last (rightmost) number of characters specified
from the field

Syntax: Left,count

where count : Number of characters to be extracted

Example:

Right,3

If the field value were “0123456789”, after the execution of the function,
the field value would contain “789”

BrightIntegrator User’s Manual Page 110 of 110
www.brightsoft.com.au Version 4.0.0

